Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill

The 6-high continuously variable crown (6-h CVC) cold rolling mill shows limited capability to control coupled edge and center waves for both narrow strip and ultra-wide strip production. In order to solve this problem, an integrated three-dimensional (3D) elastic-plastic finite element model (FEM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-02, Vol.100 (9-12), p.2387-2399
Hauptverfasser: Li, Hongbo, Zhao, Zhenwei, Zhang, Jie, Kong, Ning, Bao, Renren, Jia, Shenghui, He, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2399
container_issue 9-12
container_start_page 2387
container_title International journal of advanced manufacturing technology
container_volume 100
creator Li, Hongbo
Zhao, Zhenwei
Zhang, Jie
Kong, Ning
Bao, Renren
Jia, Shenghui
He, Fei
description The 6-high continuously variable crown (6-h CVC) cold rolling mill shows limited capability to control coupled edge and center waves for both narrow strip and ultra-wide strip production. In order to solve this problem, an integrated three-dimensional (3D) elastic-plastic finite element model (FEM) of rolls and strip is built to calculate the effect functions in consideration of work roll bending (WRB), intermediate roll bending (IMRB), and CVC intermediate roll shifting (IMRS) with different strip widths. A set of orthogonal vectors which is defined as eigenvectors is proposed to analyze the similarities and the complementarities of the effect functions. It is applied to study the flatness control characteristics of the cold rolling mill. Based on the analysis of flatness stress characteristics of different strip widths in the production, it is found that the similarities between the flatness stress and the eigenvectors of different strip widths are relative low. The flatness defects are difficult to be eliminated. From the relationship between IMRS and strip widths, a segmented CVC intermediate roll contour is then proposed and experimented in an industrial production. The proportion of coupled edge and center waves is decreased by 15.2%, and the overall flatness is reduced by 0.7 IU.
doi_str_mv 10.1007/s00170-018-2838-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490871423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490871423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5fc5d54f0f680ff25a494fafc928a84147e6d59669ad59732c8e4b14d93f33453</originalsourceid><addsrcrecordid>eNp9kTtLBDEUhYMouD5-gF3AOpr3ZEpZfIFgo7Yhm0ncLNnJmmSLtfKnGx3BSqsD937ncC8HgDOCLwjG3WXBmHQYYaIQVUwhvgdmhDOGGCZiH8wwlQqxTqpDcFTKqtGSSDUDH1ejibsSCkwe-mjq6EqBNo01pwit2ZhFiKHu4MIUN8A0wrp00HnvbIV-O9oa2syMA2x8_DambYZpU8M6vJvvrU8ZSrSE85d5A-KEhvEVrkOMJ-DAm1jc6Y8eg-eb66f5HXp4vL2fXz0gyzivSHgrBsE99lJh76kwvOfeeNtTZRQnvHNyEL2UvWnSMWqV4wvCh555xrhgx-B8yt3k9LZ1pepVO7Q9XzTlPVYd4ZT9S5Gu6ykTgjaKTJTNqZTsvN7ksDZ5pwnWX3XoqQ7d6tBfdWjePHTylMaOry7_Jv9t-gSeY402</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490871423</pqid></control><display><type>article</type><title>Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Hongbo ; Zhao, Zhenwei ; Zhang, Jie ; Kong, Ning ; Bao, Renren ; Jia, Shenghui ; He, Fei</creator><creatorcontrib>Li, Hongbo ; Zhao, Zhenwei ; Zhang, Jie ; Kong, Ning ; Bao, Renren ; Jia, Shenghui ; He, Fei</creatorcontrib><description>The 6-high continuously variable crown (6-h CVC) cold rolling mill shows limited capability to control coupled edge and center waves for both narrow strip and ultra-wide strip production. In order to solve this problem, an integrated three-dimensional (3D) elastic-plastic finite element model (FEM) of rolls and strip is built to calculate the effect functions in consideration of work roll bending (WRB), intermediate roll bending (IMRB), and CVC intermediate roll shifting (IMRS) with different strip widths. A set of orthogonal vectors which is defined as eigenvectors is proposed to analyze the similarities and the complementarities of the effect functions. It is applied to study the flatness control characteristics of the cold rolling mill. Based on the analysis of flatness stress characteristics of different strip widths in the production, it is found that the similarities between the flatness stress and the eigenvectors of different strip widths are relative low. The flatness defects are difficult to be eliminated. From the relationship between IMRS and strip widths, a segmented CVC intermediate roll contour is then proposed and experimented in an industrial production. The proportion of coupled edge and center waves is decreased by 15.2%, and the overall flatness is reduced by 0.7 IU.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-2838-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Analogies ; CAE) and Design ; Cold rolling mills ; Computer-Aided Engineering (CAD ; Continuously variable ; Contour milling ; Contour rolling ; Eigenvectors ; Engineering ; Finite element method ; Flatness ; Industrial and Production Engineering ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Roll bending ; Rolling mills ; Similarity ; Strip ; Three dimensional models</subject><ispartof>International journal of advanced manufacturing technology, 2019-02, Vol.100 (9-12), p.2387-2399</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5fc5d54f0f680ff25a494fafc928a84147e6d59669ad59732c8e4b14d93f33453</citedby><cites>FETCH-LOGICAL-c344t-5fc5d54f0f680ff25a494fafc928a84147e6d59669ad59732c8e4b14d93f33453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-018-2838-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-018-2838-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, Hongbo</creatorcontrib><creatorcontrib>Zhao, Zhenwei</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Kong, Ning</creatorcontrib><creatorcontrib>Bao, Renren</creatorcontrib><creatorcontrib>Jia, Shenghui</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><title>Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The 6-high continuously variable crown (6-h CVC) cold rolling mill shows limited capability to control coupled edge and center waves for both narrow strip and ultra-wide strip production. In order to solve this problem, an integrated three-dimensional (3D) elastic-plastic finite element model (FEM) of rolls and strip is built to calculate the effect functions in consideration of work roll bending (WRB), intermediate roll bending (IMRB), and CVC intermediate roll shifting (IMRS) with different strip widths. A set of orthogonal vectors which is defined as eigenvectors is proposed to analyze the similarities and the complementarities of the effect functions. It is applied to study the flatness control characteristics of the cold rolling mill. Based on the analysis of flatness stress characteristics of different strip widths in the production, it is found that the similarities between the flatness stress and the eigenvectors of different strip widths are relative low. The flatness defects are difficult to be eliminated. From the relationship between IMRS and strip widths, a segmented CVC intermediate roll contour is then proposed and experimented in an industrial production. The proportion of coupled edge and center waves is decreased by 15.2%, and the overall flatness is reduced by 0.7 IU.</description><subject>Analogies</subject><subject>CAE) and Design</subject><subject>Cold rolling mills</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Continuously variable</subject><subject>Contour milling</subject><subject>Contour rolling</subject><subject>Eigenvectors</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flatness</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Roll bending</subject><subject>Rolling mills</subject><subject>Similarity</subject><subject>Strip</subject><subject>Three dimensional models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kTtLBDEUhYMouD5-gF3AOpr3ZEpZfIFgo7Yhm0ncLNnJmmSLtfKnGx3BSqsD937ncC8HgDOCLwjG3WXBmHQYYaIQVUwhvgdmhDOGGCZiH8wwlQqxTqpDcFTKqtGSSDUDH1ejibsSCkwe-mjq6EqBNo01pwit2ZhFiKHu4MIUN8A0wrp00HnvbIV-O9oa2syMA2x8_DambYZpU8M6vJvvrU8ZSrSE85d5A-KEhvEVrkOMJ-DAm1jc6Y8eg-eb66f5HXp4vL2fXz0gyzivSHgrBsE99lJh76kwvOfeeNtTZRQnvHNyEL2UvWnSMWqV4wvCh555xrhgx-B8yt3k9LZ1pepVO7Q9XzTlPVYd4ZT9S5Gu6ykTgjaKTJTNqZTsvN7ksDZ5pwnWX3XoqQ7d6tBfdWjePHTylMaOry7_Jv9t-gSeY402</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Li, Hongbo</creator><creator>Zhao, Zhenwei</creator><creator>Zhang, Jie</creator><creator>Kong, Ning</creator><creator>Bao, Renren</creator><creator>Jia, Shenghui</creator><creator>He, Fei</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190201</creationdate><title>Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill</title><author>Li, Hongbo ; Zhao, Zhenwei ; Zhang, Jie ; Kong, Ning ; Bao, Renren ; Jia, Shenghui ; He, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5fc5d54f0f680ff25a494fafc928a84147e6d59669ad59732c8e4b14d93f33453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analogies</topic><topic>CAE) and Design</topic><topic>Cold rolling mills</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Continuously variable</topic><topic>Contour milling</topic><topic>Contour rolling</topic><topic>Eigenvectors</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flatness</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Roll bending</topic><topic>Rolling mills</topic><topic>Similarity</topic><topic>Strip</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongbo</creatorcontrib><creatorcontrib>Zhao, Zhenwei</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Kong, Ning</creatorcontrib><creatorcontrib>Bao, Renren</creatorcontrib><creatorcontrib>Jia, Shenghui</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongbo</au><au>Zhao, Zhenwei</au><au>Zhang, Jie</au><au>Kong, Ning</au><au>Bao, Renren</au><au>Jia, Shenghui</au><au>He, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>100</volume><issue>9-12</issue><spage>2387</spage><epage>2399</epage><pages>2387-2399</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The 6-high continuously variable crown (6-h CVC) cold rolling mill shows limited capability to control coupled edge and center waves for both narrow strip and ultra-wide strip production. In order to solve this problem, an integrated three-dimensional (3D) elastic-plastic finite element model (FEM) of rolls and strip is built to calculate the effect functions in consideration of work roll bending (WRB), intermediate roll bending (IMRB), and CVC intermediate roll shifting (IMRS) with different strip widths. A set of orthogonal vectors which is defined as eigenvectors is proposed to analyze the similarities and the complementarities of the effect functions. It is applied to study the flatness control characteristics of the cold rolling mill. Based on the analysis of flatness stress characteristics of different strip widths in the production, it is found that the similarities between the flatness stress and the eigenvectors of different strip widths are relative low. The flatness defects are difficult to be eliminated. From the relationship between IMRS and strip widths, a segmented CVC intermediate roll contour is then proposed and experimented in an industrial production. The proportion of coupled edge and center waves is decreased by 15.2%, and the overall flatness is reduced by 0.7 IU.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-2838-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-02, Vol.100 (9-12), p.2387-2399
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490871423
source SpringerLink Journals - AutoHoldings
subjects Analogies
CAE) and Design
Cold rolling mills
Computer-Aided Engineering (CAD
Continuously variable
Contour milling
Contour rolling
Eigenvectors
Engineering
Finite element method
Flatness
Industrial and Production Engineering
Mathematical analysis
Mathematical models
Mechanical Engineering
Media Management
Optimization
Original Article
Roll bending
Rolling mills
Similarity
Strip
Three dimensional models
title Analysis of flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold rolling mill
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20flatness%20control%20capability%20based%20on%20the%20effect%20function%20and%20roll%20contour%20optimization%20for%206-h%20CVC%20cold%20rolling%20mill&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Li,%20Hongbo&rft.date=2019-02-01&rft.volume=100&rft.issue=9-12&rft.spage=2387&rft.epage=2399&rft.pages=2387-2399&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-2838-4&rft_dat=%3Cproquest_cross%3E2490871423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490871423&rft_id=info:pmid/&rfr_iscdi=true