Residual stress prediction in ultrasonic vibration–assisted milling

In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-10, Vol.104 (5-8), p.2579-2592
Hauptverfasser: Feng, Yixuan, Hsu, Fu-Chuan, Lu, Yu-Ting, Lin, Yu-Fu, Lin, Chorng-Tyan, Lin, Chiu-Feng, Lu, Ying-Cheng, Liang, Steven Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2592
container_issue 5-8
container_start_page 2579
container_title International journal of advanced manufacturing technology
container_volume 104
creator Feng, Yixuan
Hsu, Fu-Chuan
Lu, Yu-Ting
Lin, Yu-Fu
Lin, Chorng-Tyan
Lin, Chiu-Feng
Lu, Ying-Cheng
Liang, Steven Y.
description In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.
doi_str_mv 10.1007/s00170-019-04109-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490871122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490871122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC62hukuZnKcP4A4Igug5pmw4ZOu2Y2wqz8x18Q5_EjhXczerC4TvnwkfIJbBrYEzfIGOgGWVgKZPALN0dkRlIIahgkB-TGePKUKGVOSVniOsRV6DMjCxfAsZq8E2GfQqI2TaFKpZ97NosttnQ9Mlj18Yy-4hF8vv8-_PLI0bsQ5VtYtPEdnVOTmrfYLj4u3Pydrd8XTzQp-f7x8XtEy2F1D3lVahUnlfWKuC6rPMSVA5We2YCyIrrWgdhdW3KmmsZNJeFKqwGX9RcWCHEnFxNu9vUvQ8Be7fuhtSOLx2XlhkNwPlBiudGGikUGyk-UWXqEFOo3TbFjU87B8ztpbpJqhulul-pbjeWxFTCEW5XIf1PH2j9ACozes0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258484360</pqid></control><display><type>article</type><title>Residual stress prediction in ultrasonic vibration–assisted milling</title><source>SpringerNature Journals</source><creator>Feng, Yixuan ; Hsu, Fu-Chuan ; Lu, Yu-Ting ; Lin, Yu-Fu ; Lin, Chorng-Tyan ; Lin, Chiu-Feng ; Lu, Ying-Cheng ; Liang, Steven Y.</creator><creatorcontrib>Feng, Yixuan ; Hsu, Fu-Chuan ; Lu, Yu-Ting ; Lin, Yu-Fu ; Lin, Chorng-Tyan ; Lin, Chiu-Feng ; Lu, Ying-Cheng ; Liang, Steven Y.</creatorcontrib><description>In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04109-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Austenitic stainless steels ; Axial stress ; CAE) and Design ; Compressive properties ; Computer-Aided Engineering (CAD ; Criteria ; Engineering ; Error detection ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Prediction models ; Residual stress ; Sensitivity analysis ; Stress concentration ; Stress distribution ; Stress relaxation ; Thermal stress ; Ultrasonic vibration ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2019-10, Vol.104 (5-8), p.2579-2592</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</citedby><cites>FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04109-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04109-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Feng, Yixuan</creatorcontrib><creatorcontrib>Hsu, Fu-Chuan</creatorcontrib><creatorcontrib>Lu, Yu-Ting</creatorcontrib><creatorcontrib>Lin, Yu-Fu</creatorcontrib><creatorcontrib>Lin, Chorng-Tyan</creatorcontrib><creatorcontrib>Lin, Chiu-Feng</creatorcontrib><creatorcontrib>Lu, Ying-Cheng</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Residual stress prediction in ultrasonic vibration–assisted milling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.</description><subject>Austenitic stainless steels</subject><subject>Axial stress</subject><subject>CAE) and Design</subject><subject>Compressive properties</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Criteria</subject><subject>Engineering</subject><subject>Error detection</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Residual stress</subject><subject>Sensitivity analysis</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress relaxation</subject><subject>Thermal stress</subject><subject>Ultrasonic vibration</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuC62hukuZnKcP4A4Igug5pmw4ZOu2Y2wqz8x18Q5_EjhXczerC4TvnwkfIJbBrYEzfIGOgGWVgKZPALN0dkRlIIahgkB-TGePKUKGVOSVniOsRV6DMjCxfAsZq8E2GfQqI2TaFKpZ97NosttnQ9Mlj18Yy-4hF8vv8-_PLI0bsQ5VtYtPEdnVOTmrfYLj4u3Pydrd8XTzQp-f7x8XtEy2F1D3lVahUnlfWKuC6rPMSVA5We2YCyIrrWgdhdW3KmmsZNJeFKqwGX9RcWCHEnFxNu9vUvQ8Be7fuhtSOLx2XlhkNwPlBiudGGikUGyk-UWXqEFOo3TbFjU87B8ztpbpJqhulul-pbjeWxFTCEW5XIf1PH2j9ACozes0</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Feng, Yixuan</creator><creator>Hsu, Fu-Chuan</creator><creator>Lu, Yu-Ting</creator><creator>Lin, Yu-Fu</creator><creator>Lin, Chorng-Tyan</creator><creator>Lin, Chiu-Feng</creator><creator>Lu, Ying-Cheng</creator><creator>Liang, Steven Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Residual stress prediction in ultrasonic vibration–assisted milling</title><author>Feng, Yixuan ; Hsu, Fu-Chuan ; Lu, Yu-Ting ; Lin, Yu-Fu ; Lin, Chorng-Tyan ; Lin, Chiu-Feng ; Lu, Ying-Cheng ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Axial stress</topic><topic>CAE) and Design</topic><topic>Compressive properties</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Criteria</topic><topic>Engineering</topic><topic>Error detection</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Residual stress</topic><topic>Sensitivity analysis</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress relaxation</topic><topic>Thermal stress</topic><topic>Ultrasonic vibration</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yixuan</creatorcontrib><creatorcontrib>Hsu, Fu-Chuan</creatorcontrib><creatorcontrib>Lu, Yu-Ting</creatorcontrib><creatorcontrib>Lin, Yu-Fu</creatorcontrib><creatorcontrib>Lin, Chorng-Tyan</creatorcontrib><creatorcontrib>Lin, Chiu-Feng</creatorcontrib><creatorcontrib>Lu, Ying-Cheng</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yixuan</au><au>Hsu, Fu-Chuan</au><au>Lu, Yu-Ting</au><au>Lin, Yu-Fu</au><au>Lin, Chorng-Tyan</au><au>Lin, Chiu-Feng</au><au>Lu, Ying-Cheng</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual stress prediction in ultrasonic vibration–assisted milling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>104</volume><issue>5-8</issue><spage>2579</spage><epage>2592</epage><pages>2579-2592</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04109-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-10, Vol.104 (5-8), p.2579-2592
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490871122
source SpringerNature Journals
subjects Austenitic stainless steels
Axial stress
CAE) and Design
Compressive properties
Computer-Aided Engineering (CAD
Criteria
Engineering
Error detection
Industrial and Production Engineering
Mechanical Engineering
Media Management
Original Article
Prediction models
Residual stress
Sensitivity analysis
Stress concentration
Stress distribution
Stress relaxation
Thermal stress
Ultrasonic vibration
Workpieces
title Residual stress prediction in ultrasonic vibration–assisted milling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20stress%20prediction%20in%20ultrasonic%20vibration%E2%80%93assisted%20milling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Feng,%20Yixuan&rft.date=2019-10-01&rft.volume=104&rft.issue=5-8&rft.spage=2579&rft.epage=2592&rft.pages=2579-2592&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04109-y&rft_dat=%3Cproquest_cross%3E2490871122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258484360&rft_id=info:pmid/&rfr_iscdi=true