Residual stress prediction in ultrasonic vibration–assisted milling
In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position an...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2019-10, Vol.104 (5-8), p.2579-2592 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2592 |
---|---|
container_issue | 5-8 |
container_start_page | 2579 |
container_title | International journal of advanced manufacturing technology |
container_volume | 104 |
creator | Feng, Yixuan Hsu, Fu-Chuan Lu, Yu-Ting Lin, Yu-Fu Lin, Chorng-Tyan Lin, Chiu-Feng Lu, Ying-Cheng Liang, Steven Y. |
description | In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy. |
doi_str_mv | 10.1007/s00170-019-04109-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490871122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490871122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC62hukuZnKcP4A4Igug5pmw4ZOu2Y2wqz8x18Q5_EjhXczerC4TvnwkfIJbBrYEzfIGOgGWVgKZPALN0dkRlIIahgkB-TGePKUKGVOSVniOsRV6DMjCxfAsZq8E2GfQqI2TaFKpZ97NosttnQ9Mlj18Yy-4hF8vv8-_PLI0bsQ5VtYtPEdnVOTmrfYLj4u3Pydrd8XTzQp-f7x8XtEy2F1D3lVahUnlfWKuC6rPMSVA5We2YCyIrrWgdhdW3KmmsZNJeFKqwGX9RcWCHEnFxNu9vUvQ8Be7fuhtSOLx2XlhkNwPlBiudGGikUGyk-UWXqEFOo3TbFjU87B8ztpbpJqhulul-pbjeWxFTCEW5XIf1PH2j9ACozes0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258484360</pqid></control><display><type>article</type><title>Residual stress prediction in ultrasonic vibration–assisted milling</title><source>SpringerNature Journals</source><creator>Feng, Yixuan ; Hsu, Fu-Chuan ; Lu, Yu-Ting ; Lin, Yu-Fu ; Lin, Chorng-Tyan ; Lin, Chiu-Feng ; Lu, Ying-Cheng ; Liang, Steven Y.</creator><creatorcontrib>Feng, Yixuan ; Hsu, Fu-Chuan ; Lu, Yu-Ting ; Lin, Yu-Fu ; Lin, Chorng-Tyan ; Lin, Chiu-Feng ; Lu, Ying-Cheng ; Liang, Steven Y.</creatorcontrib><description>In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04109-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Austenitic stainless steels ; Axial stress ; CAE) and Design ; Compressive properties ; Computer-Aided Engineering (CAD ; Criteria ; Engineering ; Error detection ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Prediction models ; Residual stress ; Sensitivity analysis ; Stress concentration ; Stress distribution ; Stress relaxation ; Thermal stress ; Ultrasonic vibration ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2019-10, Vol.104 (5-8), p.2579-2592</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</citedby><cites>FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04109-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04109-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Feng, Yixuan</creatorcontrib><creatorcontrib>Hsu, Fu-Chuan</creatorcontrib><creatorcontrib>Lu, Yu-Ting</creatorcontrib><creatorcontrib>Lin, Yu-Fu</creatorcontrib><creatorcontrib>Lin, Chorng-Tyan</creatorcontrib><creatorcontrib>Lin, Chiu-Feng</creatorcontrib><creatorcontrib>Lu, Ying-Cheng</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Residual stress prediction in ultrasonic vibration–assisted milling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.</description><subject>Austenitic stainless steels</subject><subject>Axial stress</subject><subject>CAE) and Design</subject><subject>Compressive properties</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Criteria</subject><subject>Engineering</subject><subject>Error detection</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Residual stress</subject><subject>Sensitivity analysis</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress relaxation</subject><subject>Thermal stress</subject><subject>Ultrasonic vibration</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuC62hukuZnKcP4A4Igug5pmw4ZOu2Y2wqz8x18Q5_EjhXczerC4TvnwkfIJbBrYEzfIGOgGWVgKZPALN0dkRlIIahgkB-TGePKUKGVOSVniOsRV6DMjCxfAsZq8E2GfQqI2TaFKpZ97NosttnQ9Mlj18Yy-4hF8vv8-_PLI0bsQ5VtYtPEdnVOTmrfYLj4u3Pydrd8XTzQp-f7x8XtEy2F1D3lVahUnlfWKuC6rPMSVA5We2YCyIrrWgdhdW3KmmsZNJeFKqwGX9RcWCHEnFxNu9vUvQ8Be7fuhtSOLx2XlhkNwPlBiudGGikUGyk-UWXqEFOo3TbFjU87B8ztpbpJqhulul-pbjeWxFTCEW5XIf1PH2j9ACozes0</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Feng, Yixuan</creator><creator>Hsu, Fu-Chuan</creator><creator>Lu, Yu-Ting</creator><creator>Lin, Yu-Fu</creator><creator>Lin, Chorng-Tyan</creator><creator>Lin, Chiu-Feng</creator><creator>Lu, Ying-Cheng</creator><creator>Liang, Steven Y.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Residual stress prediction in ultrasonic vibration–assisted milling</title><author>Feng, Yixuan ; Hsu, Fu-Chuan ; Lu, Yu-Ting ; Lin, Yu-Fu ; Lin, Chorng-Tyan ; Lin, Chiu-Feng ; Lu, Ying-Cheng ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2ded655d996127cf5c165197a08e14d27f7e397f8cf274e724b6b971abf239333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Axial stress</topic><topic>CAE) and Design</topic><topic>Compressive properties</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Criteria</topic><topic>Engineering</topic><topic>Error detection</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Residual stress</topic><topic>Sensitivity analysis</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress relaxation</topic><topic>Thermal stress</topic><topic>Ultrasonic vibration</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yixuan</creatorcontrib><creatorcontrib>Hsu, Fu-Chuan</creatorcontrib><creatorcontrib>Lu, Yu-Ting</creatorcontrib><creatorcontrib>Lin, Yu-Fu</creatorcontrib><creatorcontrib>Lin, Chorng-Tyan</creatorcontrib><creatorcontrib>Lin, Chiu-Feng</creatorcontrib><creatorcontrib>Lu, Ying-Cheng</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yixuan</au><au>Hsu, Fu-Chuan</au><au>Lu, Yu-Ting</au><au>Lin, Yu-Fu</au><au>Lin, Chorng-Tyan</au><au>Lin, Chiu-Feng</au><au>Lu, Ying-Cheng</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual stress prediction in ultrasonic vibration–assisted milling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>104</volume><issue>5-8</issue><spage>2579</spage><epage>2592</epage><pages>2579-2592</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04109-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2019-10, Vol.104 (5-8), p.2579-2592 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490871122 |
source | SpringerNature Journals |
subjects | Austenitic stainless steels Axial stress CAE) and Design Compressive properties Computer-Aided Engineering (CAD Criteria Engineering Error detection Industrial and Production Engineering Mechanical Engineering Media Management Original Article Prediction models Residual stress Sensitivity analysis Stress concentration Stress distribution Stress relaxation Thermal stress Ultrasonic vibration Workpieces |
title | Residual stress prediction in ultrasonic vibration–assisted milling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20stress%20prediction%20in%20ultrasonic%20vibration%E2%80%93assisted%20milling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Feng,%20Yixuan&rft.date=2019-10-01&rft.volume=104&rft.issue=5-8&rft.spage=2579&rft.epage=2592&rft.pages=2579-2592&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04109-y&rft_dat=%3Cproquest_cross%3E2490871122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258484360&rft_id=info:pmid/&rfr_iscdi=true |