Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing

Developments in new information technology have indicated that single manufacturing services are now unable to satisfy users’ multi-objective demands, especially in the process industry. As a new user-centric, service-oriented, demand-driven manufacturing model, cloud manufacturing can provide high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2018-06, Vol.96 (9-12), p.4455-4465
Hauptverfasser: Que, Yi, Zhong, Wei, Chen, Hailin, Chen, Xinan, Ji, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4465
container_issue 9-12
container_start_page 4455
container_title International journal of advanced manufacturing technology
container_volume 96
creator Que, Yi
Zhong, Wei
Chen, Hailin
Chen, Xinan
Ji, Xu
description Developments in new information technology have indicated that single manufacturing services are now unable to satisfy users’ multi-objective demands, especially in the process industry. As a new user-centric, service-oriented, demand-driven manufacturing model, cloud manufacturing can provide high-reliability, low-cost, fast-time, high-ability services. This study presents a new Manufacturers to Users (M2U) mode for cloud manufacturing, aiming at solving the core manufacturing service composition optimal selection (MSCOS) problem. The M2U mode expands the service areas and improves its dynamic optimal allocation capabilities of resources by efficient and flexible management and operation of services. Firstly, a comprehensive mathematical evaluation model with four critical quality of service (QoS)-aware indexes (time, reliability, cost, and ability) is constructed. Secondly, a new information entropy immune genetic algorithm (IEIGA) is proposed for the model solution. Finally, nine MSCOS problems of different scales are illustrated so as to compare the performance of the three algorithms. The results prove the effectiveness and superiority of the proposed algorithm and its suitability for solving large-scale service composition problems.
doi_str_mv 10.1007/s00170-018-1925-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490868482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262149242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-dab32e69a0a6c9cb0fbe53fc6bb855a5153118ff17318889af0f1571a5d20d463</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVJoZu0H6A3Qc5qNJIly8ey5M9CIJQmZyHL0laLbTmSvdl--2q7hZy6pxmG35th3kPoK9BvQGl9kymFmhIKikDDBDl8QCuoOCecgrhAK8qkIryW6hO6zHlXaAlSrdCyGaYU967DpjPTHPYOh2FYRoe3bnRzsNj025jC_GvAPiYcCzOYHv-IP4l5M8nh7NI-WIdtHKaYwxziWGa9s3-7MGLbx6XDgxkXb-y8pDBuP6OP3vTZfflXr9DL3e3z-oE8Pt1v1t8fieU1m0lnWs6cbAw10ja2pb51gnsr21YJYQQIDqC8h5qDUqoxnnoQNRjRMdpVkl-h69Pe8uPr4vKsd3FJYzmpWdVQJVWl2FmKSQZVw6rzFK0YU3UteaHgRNkUc07O6ykVw9JvDVQfk9KnpHRJSh-T0oeiYSdNno7muPS--f-iPxJyl30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262149242</pqid></control><display><type>article</type><title>Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing</title><source>Springer Nature - Complete Springer Journals</source><creator>Que, Yi ; Zhong, Wei ; Chen, Hailin ; Chen, Xinan ; Ji, Xu</creator><creatorcontrib>Que, Yi ; Zhong, Wei ; Chen, Hailin ; Chen, Xinan ; Ji, Xu</creatorcontrib><description>Developments in new information technology have indicated that single manufacturing services are now unable to satisfy users’ multi-objective demands, especially in the process industry. As a new user-centric, service-oriented, demand-driven manufacturing model, cloud manufacturing can provide high-reliability, low-cost, fast-time, high-ability services. This study presents a new Manufacturers to Users (M2U) mode for cloud manufacturing, aiming at solving the core manufacturing service composition optimal selection (MSCOS) problem. The M2U mode expands the service areas and improves its dynamic optimal allocation capabilities of resources by efficient and flexible management and operation of services. Firstly, a comprehensive mathematical evaluation model with four critical quality of service (QoS)-aware indexes (time, reliability, cost, and ability) is constructed. Secondly, a new information entropy immune genetic algorithm (IEIGA) is proposed for the model solution. Finally, nine MSCOS problems of different scales are illustrated so as to compare the performance of the three algorithms. The results prove the effectiveness and superiority of the proposed algorithm and its suitability for solving large-scale service composition problems.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-1925-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive algorithms ; CAE) and Design ; Composition ; Computer-Aided Engineering (CAD ; Construction costs ; Engineering ; Entropy (Information theory) ; Genetic algorithms ; Industrial and Production Engineering ; Information technology ; Manufacturing ; Mechanical Engineering ; Media Management ; Original Article ; Performance indices ; Reliability ; Resource management ; Service areas ; User satisfaction</subject><ispartof>International journal of advanced manufacturing technology, 2018-06, Vol.96 (9-12), p.4455-4465</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-dab32e69a0a6c9cb0fbe53fc6bb855a5153118ff17318889af0f1571a5d20d463</citedby><cites>FETCH-LOGICAL-c372t-dab32e69a0a6c9cb0fbe53fc6bb855a5153118ff17318889af0f1571a5d20d463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-018-1925-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-018-1925-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Que, Yi</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Chen, Hailin</creatorcontrib><creatorcontrib>Chen, Xinan</creatorcontrib><creatorcontrib>Ji, Xu</creatorcontrib><title>Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Developments in new information technology have indicated that single manufacturing services are now unable to satisfy users’ multi-objective demands, especially in the process industry. As a new user-centric, service-oriented, demand-driven manufacturing model, cloud manufacturing can provide high-reliability, low-cost, fast-time, high-ability services. This study presents a new Manufacturers to Users (M2U) mode for cloud manufacturing, aiming at solving the core manufacturing service composition optimal selection (MSCOS) problem. The M2U mode expands the service areas and improves its dynamic optimal allocation capabilities of resources by efficient and flexible management and operation of services. Firstly, a comprehensive mathematical evaluation model with four critical quality of service (QoS)-aware indexes (time, reliability, cost, and ability) is constructed. Secondly, a new information entropy immune genetic algorithm (IEIGA) is proposed for the model solution. Finally, nine MSCOS problems of different scales are illustrated so as to compare the performance of the three algorithms. The results prove the effectiveness and superiority of the proposed algorithm and its suitability for solving large-scale service composition problems.</description><subject>Adaptive algorithms</subject><subject>CAE) and Design</subject><subject>Composition</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Construction costs</subject><subject>Engineering</subject><subject>Entropy (Information theory)</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Information technology</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Performance indices</subject><subject>Reliability</subject><subject>Resource management</subject><subject>Service areas</subject><subject>User satisfaction</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9r3DAQxUVJoZu0H6A3Qc5qNJIly8ey5M9CIJQmZyHL0laLbTmSvdl--2q7hZy6pxmG35th3kPoK9BvQGl9kymFmhIKikDDBDl8QCuoOCecgrhAK8qkIryW6hO6zHlXaAlSrdCyGaYU967DpjPTHPYOh2FYRoe3bnRzsNj025jC_GvAPiYcCzOYHv-IP4l5M8nh7NI-WIdtHKaYwxziWGa9s3-7MGLbx6XDgxkXb-y8pDBuP6OP3vTZfflXr9DL3e3z-oE8Pt1v1t8fieU1m0lnWs6cbAw10ja2pb51gnsr21YJYQQIDqC8h5qDUqoxnnoQNRjRMdpVkl-h69Pe8uPr4vKsd3FJYzmpWdVQJVWl2FmKSQZVw6rzFK0YU3UteaHgRNkUc07O6ykVw9JvDVQfk9KnpHRJSh-T0oeiYSdNno7muPS--f-iPxJyl30</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Que, Yi</creator><creator>Zhong, Wei</creator><creator>Chen, Hailin</creator><creator>Chen, Xinan</creator><creator>Ji, Xu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180601</creationdate><title>Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing</title><author>Que, Yi ; Zhong, Wei ; Chen, Hailin ; Chen, Xinan ; Ji, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-dab32e69a0a6c9cb0fbe53fc6bb855a5153118ff17318889af0f1571a5d20d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>CAE) and Design</topic><topic>Composition</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Construction costs</topic><topic>Engineering</topic><topic>Entropy (Information theory)</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Information technology</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Performance indices</topic><topic>Reliability</topic><topic>Resource management</topic><topic>Service areas</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Que, Yi</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Chen, Hailin</creatorcontrib><creatorcontrib>Chen, Xinan</creatorcontrib><creatorcontrib>Ji, Xu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Que, Yi</au><au>Zhong, Wei</au><au>Chen, Hailin</au><au>Chen, Xinan</au><au>Ji, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>96</volume><issue>9-12</issue><spage>4455</spage><epage>4465</epage><pages>4455-4465</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Developments in new information technology have indicated that single manufacturing services are now unable to satisfy users’ multi-objective demands, especially in the process industry. As a new user-centric, service-oriented, demand-driven manufacturing model, cloud manufacturing can provide high-reliability, low-cost, fast-time, high-ability services. This study presents a new Manufacturers to Users (M2U) mode for cloud manufacturing, aiming at solving the core manufacturing service composition optimal selection (MSCOS) problem. The M2U mode expands the service areas and improves its dynamic optimal allocation capabilities of resources by efficient and flexible management and operation of services. Firstly, a comprehensive mathematical evaluation model with four critical quality of service (QoS)-aware indexes (time, reliability, cost, and ability) is constructed. Secondly, a new information entropy immune genetic algorithm (IEIGA) is proposed for the model solution. Finally, nine MSCOS problems of different scales are illustrated so as to compare the performance of the three algorithms. The results prove the effectiveness and superiority of the proposed algorithm and its suitability for solving large-scale service composition problems.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-1925-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2018-06, Vol.96 (9-12), p.4455-4465
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490868482
source Springer Nature - Complete Springer Journals
subjects Adaptive algorithms
CAE) and Design
Composition
Computer-Aided Engineering (CAD
Construction costs
Engineering
Entropy (Information theory)
Genetic algorithms
Industrial and Production Engineering
Information technology
Manufacturing
Mechanical Engineering
Media Management
Original Article
Performance indices
Reliability
Resource management
Service areas
User satisfaction
title Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20adaptive%20immune%20genetic%20algorithm%20for%20optimal%20QoS-aware%20service%20composition%20selection%20in%20cloud%20manufacturing&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Que,%20Yi&rft.date=2018-06-01&rft.volume=96&rft.issue=9-12&rft.spage=4455&rft.epage=4465&rft.pages=4455-4465&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-1925-x&rft_dat=%3Cproquest_cross%3E2262149242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262149242&rft_id=info:pmid/&rfr_iscdi=true