Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die
Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2019-03, Vol.101 (1-4), p.1085-1093 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 1-4 |
container_start_page | 1085 |
container_title | International journal of advanced manufacturing technology |
container_volume | 101 |
creator | Woo, Min-A Song, Woo-Jin Kang, Beom-Soo Kim, Jeong |
description | Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein. |
doi_str_mv | 10.1007/s00170-018-2989-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190578664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</originalsourceid><addsrcrecordid>eNp9kc1KAzEURoMoWKsP4C7gOppMkpnMUkr9gYIbXYdMetOmzGRqMqPM25tawZWuciHn--6Fg9A1o7eM0uouUcoqSihTpKhVTfgJmjHBOeGUyVM0o0WpCK9KdY4uUtplumSlmqFx-WHa0Qy-D7h32PWxM41v_TBhCFsTLHQQhsNXxjofxi4PbT_htAUYsA8YWrBD7LfTOpqx9fa7w4cN3sfeQkr40w9b7CIAacZ2A3jt4RKdOdMmuPp55-jtYfm6eCKrl8fnxf2KWC7EQERDbamcKF0la844UOPWpqiE5HVDGUAjlTSyaKQ0rnHCrcFYK6tGcQoFt3yObo69-Zb3EdKgd_0YQ16pC1FTVZZVrf6lWE1llTmRKXakbOxTiuD0PvrOxEkzqg8O9NGBzg70wYHmOVMcMymzYQPxt_nv0BcUmYua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490866798</pqid></control><display><type>article</type><title>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</title><source>SpringerLink Journals - AutoHoldings</source><creator>Woo, Min-A ; Song, Woo-Jin ; Kang, Beom-Soo ; Kim, Jeong</creator><creatorcontrib>Woo, Min-A ; Song, Woo-Jin ; Kang, Beom-Soo ; Kim, Jeong</creatorcontrib><description>Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-2989-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Bulging ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation ; Electrohydraulic forming ; Engineering ; Extremely high frequencies ; Finite element method ; Formability ; Forming limit diagrams ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Metal sheets ; Numerical models ; Original Article ; Shock waves ; Strain distribution ; Strain measurement ; Strain rate</subject><ispartof>International journal of advanced manufacturing technology, 2019-03, Vol.101 (1-4), p.1085-1093</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</citedby><cites>FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-018-2989-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-018-2989-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Woo, Min-A</creatorcontrib><creatorcontrib>Song, Woo-Jin</creatorcontrib><creatorcontrib>Kang, Beom-Soo</creatorcontrib><creatorcontrib>Kim, Jeong</creatorcontrib><title>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Bulging</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Electrohydraulic forming</subject><subject>Engineering</subject><subject>Extremely high frequencies</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Forming limit diagrams</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metal sheets</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>Shock waves</subject><subject>Strain distribution</subject><subject>Strain measurement</subject><subject>Strain rate</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1KAzEURoMoWKsP4C7gOppMkpnMUkr9gYIbXYdMetOmzGRqMqPM25tawZWuciHn--6Fg9A1o7eM0uouUcoqSihTpKhVTfgJmjHBOeGUyVM0o0WpCK9KdY4uUtplumSlmqFx-WHa0Qy-D7h32PWxM41v_TBhCFsTLHQQhsNXxjofxi4PbT_htAUYsA8YWrBD7LfTOpqx9fa7w4cN3sfeQkr40w9b7CIAacZ2A3jt4RKdOdMmuPp55-jtYfm6eCKrl8fnxf2KWC7EQERDbamcKF0la844UOPWpqiE5HVDGUAjlTSyaKQ0rnHCrcFYK6tGcQoFt3yObo69-Zb3EdKgd_0YQ16pC1FTVZZVrf6lWE1llTmRKXakbOxTiuD0PvrOxEkzqg8O9NGBzg70wYHmOVMcMymzYQPxt_nv0BcUmYua</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Woo, Min-A</creator><creator>Song, Woo-Jin</creator><creator>Kang, Beom-Soo</creator><creator>Kim, Jeong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190301</creationdate><title>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</title><author>Woo, Min-A ; Song, Woo-Jin ; Kang, Beom-Soo ; Kim, Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Bulging</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Electrohydraulic forming</topic><topic>Engineering</topic><topic>Extremely high frequencies</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Forming limit diagrams</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metal sheets</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>Shock waves</topic><topic>Strain distribution</topic><topic>Strain measurement</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Min-A</creatorcontrib><creatorcontrib>Song, Woo-Jin</creatorcontrib><creatorcontrib>Kang, Beom-Soo</creatorcontrib><creatorcontrib>Kim, Jeong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Min-A</au><au>Song, Woo-Jin</au><au>Kang, Beom-Soo</au><au>Kim, Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>101</volume><issue>1-4</issue><spage>1085</spage><epage>1093</epage><pages>1085-1093</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-2989-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2019-03, Vol.101 (1-4), p.1085-1093 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490866798 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum alloys Aluminum base alloys Bulging CAE) and Design Computer simulation Computer-Aided Engineering (CAD Deformation Electrohydraulic forming Engineering Extremely high frequencies Finite element method Formability Forming limit diagrams Industrial and Production Engineering Mathematical models Mechanical Engineering Media Management Metal sheets Numerical models Original Article Shock waves Strain distribution Strain measurement Strain rate |
title | Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20formability%20enhancement%20of%20aluminum%20alloy%20sheet%20in%20electrohydraulic%20forming%20process%20with%20free-bulge%20die&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Woo,%20Min-A&rft.date=2019-03-01&rft.volume=101&rft.issue=1-4&rft.spage=1085&rft.epage=1093&rft.pages=1085-1093&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-2989-3&rft_dat=%3Cproquest_cross%3E2190578664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490866798&rft_id=info:pmid/&rfr_iscdi=true |