Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die

Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-03, Vol.101 (1-4), p.1085-1093
Hauptverfasser: Woo, Min-A, Song, Woo-Jin, Kang, Beom-Soo, Kim, Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 1-4
container_start_page 1085
container_title International journal of advanced manufacturing technology
container_volume 101
creator Woo, Min-A
Song, Woo-Jin
Kang, Beom-Soo
Kim, Jeong
description Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.
doi_str_mv 10.1007/s00170-018-2989-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190578664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</originalsourceid><addsrcrecordid>eNp9kc1KAzEURoMoWKsP4C7gOppMkpnMUkr9gYIbXYdMetOmzGRqMqPM25tawZWuciHn--6Fg9A1o7eM0uouUcoqSihTpKhVTfgJmjHBOeGUyVM0o0WpCK9KdY4uUtplumSlmqFx-WHa0Qy-D7h32PWxM41v_TBhCFsTLHQQhsNXxjofxi4PbT_htAUYsA8YWrBD7LfTOpqx9fa7w4cN3sfeQkr40w9b7CIAacZ2A3jt4RKdOdMmuPp55-jtYfm6eCKrl8fnxf2KWC7EQERDbamcKF0la844UOPWpqiE5HVDGUAjlTSyaKQ0rnHCrcFYK6tGcQoFt3yObo69-Zb3EdKgd_0YQ16pC1FTVZZVrf6lWE1llTmRKXakbOxTiuD0PvrOxEkzqg8O9NGBzg70wYHmOVMcMymzYQPxt_nv0BcUmYua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490866798</pqid></control><display><type>article</type><title>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</title><source>SpringerLink Journals - AutoHoldings</source><creator>Woo, Min-A ; Song, Woo-Jin ; Kang, Beom-Soo ; Kim, Jeong</creator><creatorcontrib>Woo, Min-A ; Song, Woo-Jin ; Kang, Beom-Soo ; Kim, Jeong</creatorcontrib><description>Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-2989-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Bulging ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Deformation ; Electrohydraulic forming ; Engineering ; Extremely high frequencies ; Finite element method ; Formability ; Forming limit diagrams ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Metal sheets ; Numerical models ; Original Article ; Shock waves ; Strain distribution ; Strain measurement ; Strain rate</subject><ispartof>International journal of advanced manufacturing technology, 2019-03, Vol.101 (1-4), p.1085-1093</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</citedby><cites>FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-018-2989-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-018-2989-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Woo, Min-A</creatorcontrib><creatorcontrib>Song, Woo-Jin</creatorcontrib><creatorcontrib>Kang, Beom-Soo</creatorcontrib><creatorcontrib>Kim, Jeong</creatorcontrib><title>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Bulging</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation</subject><subject>Electrohydraulic forming</subject><subject>Engineering</subject><subject>Extremely high frequencies</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Forming limit diagrams</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metal sheets</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>Shock waves</subject><subject>Strain distribution</subject><subject>Strain measurement</subject><subject>Strain rate</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1KAzEURoMoWKsP4C7gOppMkpnMUkr9gYIbXYdMetOmzGRqMqPM25tawZWuciHn--6Fg9A1o7eM0uouUcoqSihTpKhVTfgJmjHBOeGUyVM0o0WpCK9KdY4uUtplumSlmqFx-WHa0Qy-D7h32PWxM41v_TBhCFsTLHQQhsNXxjofxi4PbT_htAUYsA8YWrBD7LfTOpqx9fa7w4cN3sfeQkr40w9b7CIAacZ2A3jt4RKdOdMmuPp55-jtYfm6eCKrl8fnxf2KWC7EQERDbamcKF0la844UOPWpqiE5HVDGUAjlTSyaKQ0rnHCrcFYK6tGcQoFt3yObo69-Zb3EdKgd_0YQ16pC1FTVZZVrf6lWE1llTmRKXakbOxTiuD0PvrOxEkzqg8O9NGBzg70wYHmOVMcMymzYQPxt_nv0BcUmYua</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Woo, Min-A</creator><creator>Song, Woo-Jin</creator><creator>Kang, Beom-Soo</creator><creator>Kim, Jeong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190301</creationdate><title>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</title><author>Woo, Min-A ; Song, Woo-Jin ; Kang, Beom-Soo ; Kim, Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4b0c68f46f759313e0afda274539b01eeb585a52b55afbf4fdeacc57b830e23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Bulging</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation</topic><topic>Electrohydraulic forming</topic><topic>Engineering</topic><topic>Extremely high frequencies</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Forming limit diagrams</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metal sheets</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>Shock waves</topic><topic>Strain distribution</topic><topic>Strain measurement</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Min-A</creatorcontrib><creatorcontrib>Song, Woo-Jin</creatorcontrib><creatorcontrib>Kang, Beom-Soo</creatorcontrib><creatorcontrib>Kim, Jeong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Min-A</au><au>Song, Woo-Jin</au><au>Kang, Beom-Soo</au><au>Kim, Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>101</volume><issue>1-4</issue><spage>1085</spage><epage>1093</epage><pages>1085-1093</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Electrohydraulic forming (EHF), a high-speed forming process, deforms a material by using high-pressure shockwaves in a fluid-filled chamber. When a material is deformed at speeds higher than 100 m/s, its formability can be improved due to the high-strain rate effect. This allows for the production of complex shapes, such as sharp edges. Therefore, in the present study, we confirm improvement in the formability of aluminum alloy 6061-T6 under high-strain rate condition by conducting EHF experiments. The strains of the deformed specimen are measured using a strain measurement apparatus, and they are compared with the values obtained from a quasi-static forming limit diagram. The comparison verified the improvement in formability, in that the material did not fracture even though the strain distribution of the material at high speeds was located higher than the quasi-static forming limit curve. In addition, we perform finite element analysis to observe the deformed material in detail. Finally, we compare the strain distributions obtained in the numerical simulation and the experiment to verify the reliability of the numerical model proposed herein.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-2989-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-03, Vol.101 (1-4), p.1085-1093
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490866798
source SpringerLink Journals - AutoHoldings
subjects Aluminum alloys
Aluminum base alloys
Bulging
CAE) and Design
Computer simulation
Computer-Aided Engineering (CAD
Deformation
Electrohydraulic forming
Engineering
Extremely high frequencies
Finite element method
Formability
Forming limit diagrams
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Media Management
Metal sheets
Numerical models
Original Article
Shock waves
Strain distribution
Strain measurement
Strain rate
title Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20formability%20enhancement%20of%20aluminum%20alloy%20sheet%20in%20electrohydraulic%20forming%20process%20with%20free-bulge%20die&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Woo,%20Min-A&rft.date=2019-03-01&rft.volume=101&rft.issue=1-4&rft.spage=1085&rft.epage=1093&rft.pages=1085-1093&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-2989-3&rft_dat=%3Cproquest_cross%3E2190578664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490866798&rft_id=info:pmid/&rfr_iscdi=true