Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements

Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing processes. One of the constraints for a broader industrial use of this process is the limited knowledge of its dimensional performances and geometrical behavior, as well as the inability to predict them as a function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-03, Vol.107 (3-4), p.1411-1436
Hauptverfasser: Zongo, Floriane, Simoneau, Charles, Timercan, Anatolie, Tahan, Antoine, Brailovski, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1436
container_issue 3-4
container_start_page 1411
container_title International journal of advanced manufacturing technology
container_volume 107
creator Zongo, Floriane
Simoneau, Charles
Timercan, Anatolie
Tahan, Antoine
Brailovski, Vladimir
description Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing processes. One of the constraints for a broader industrial use of this process is the limited knowledge of its dimensional performances and geometrical behavior, as well as the inability to predict them as a function of material, process parameters, part size, and geometry. The objective of this study is to enrich knowledge of the geometric dimensioning and tolerancing (GD&T) performances of the LPBF process and to evaluate the distortion prediction capabilities of the ANSYS Additive Print ® software. To this end, a selected topologically optimized part with three different support configurations was manufactured using an EOSINT M280 printer and AlSi10Mg powder. After printing, the parts were scanned using a coordinate measuring machine (CMM) and a micro-computed tomography (μ-CT) system. The GD&T calculations were carried out according to the ASME Y14.5 (2009) standard. The distortions measured by the CMM and μ-CT techniques were 0.195 mm and 0.368 mm, respectively (95% interval). After the software calibration and two numerical sensitivity studies, the same stereolithography files used to print the parts were downloaded into the ANSYS Additive Print ® software to calculate distortions caused by the process. The differences between the experimentally measured and the ANSYS-predicted distortions for a 56 mm × 58 mm × 137 mm part fell within a 0.134 mm range at a 95% interval. The fidelity of the numerical predictions, the impact of the support structures, and the differences induced by the CMM and μ-CT measurement uncertainties are presented and discussed.
doi_str_mv 10.1007/s00170-020-04987-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490866247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387920714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-fb1a6ed94df38ca0cb6ce2d55b85de5ac24c572387de2d1c7bcf929edb74f9333</originalsourceid><addsrcrecordid>eNp9kc1KxDAURoMoOI6-gKuA62p-2qZ1Nww6CiMu1HVIk5uhw7SpSTsquPAdfEOfxIwV3LkIl-See0LyIXRKyTklRFwEQqggCWFxpWUhErGHJjTlPOGEZvtoQlheJFzkxSE6CmEd8ZzmxQS9L8A10PtaYwPbWvW1awN2Fm9UAI8792JiqcB8fXzaIYDBs81DTcndCmvXdK6Ftg-XuB0aiA61wZ0HU-tRswUfhoDhtYvNJpKx34AKg4fdLhyjA6s2AU5-6xQ9XV89zm-S5f3idj5bJpqXpE9sRVUOpkyN5YVWRFe5BmayrCoyA5nSLNWZYLwQJh5TLSptS1aCqURqS875FJ2N3s675wFCL9du8G28UrK0JEWes1T8S0V3yYiIPzpFbKS0dyF4sLKLb1P-TVIid1nIMQsZs5A_Wcidmo9DIcLtCvyf-p-pb-mgkGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387920714</pqid></control><display><type>article</type><title>Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zongo, Floriane ; Simoneau, Charles ; Timercan, Anatolie ; Tahan, Antoine ; Brailovski, Vladimir</creator><creatorcontrib>Zongo, Floriane ; Simoneau, Charles ; Timercan, Anatolie ; Tahan, Antoine ; Brailovski, Vladimir</creatorcontrib><description>Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing processes. One of the constraints for a broader industrial use of this process is the limited knowledge of its dimensional performances and geometrical behavior, as well as the inability to predict them as a function of material, process parameters, part size, and geometry. The objective of this study is to enrich knowledge of the geometric dimensioning and tolerancing (GD&amp;T) performances of the LPBF process and to evaluate the distortion prediction capabilities of the ANSYS Additive Print ® software. To this end, a selected topologically optimized part with three different support configurations was manufactured using an EOSINT M280 printer and AlSi10Mg powder. After printing, the parts were scanned using a coordinate measuring machine (CMM) and a micro-computed tomography (μ-CT) system. The GD&amp;T calculations were carried out according to the ASME Y14.5 (2009) standard. The distortions measured by the CMM and μ-CT techniques were 0.195 mm and 0.368 mm, respectively (95% interval). After the software calibration and two numerical sensitivity studies, the same stereolithography files used to print the parts were downloaded into the ANSYS Additive Print ® software to calculate distortions caused by the process. The differences between the experimentally measured and the ANSYS-predicted distortions for a 56 mm × 58 mm × 137 mm part fell within a 0.134 mm range at a 95% interval. The fidelity of the numerical predictions, the impact of the support structures, and the differences induced by the CMM and μ-CT measurement uncertainties are presented and discussed.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-04987-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum base alloys ; CAE) and Design ; Computed tomography ; Computer-Aided Engineering (CAD ; Coordinate measuring machines ; Distortion ; Engineering ; Industrial and Production Engineering ; Industrial applications ; Lithography ; Mechanical Engineering ; Media Management ; Numerical prediction ; Original Article ; Powder beds ; Process parameters ; Rapid prototyping ; Software</subject><ispartof>International journal of advanced manufacturing technology, 2020-03, Vol.107 (3-4), p.1411-1436</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-fb1a6ed94df38ca0cb6ce2d55b85de5ac24c572387de2d1c7bcf929edb74f9333</citedby><cites>FETCH-LOGICAL-c390t-fb1a6ed94df38ca0cb6ce2d55b85de5ac24c572387de2d1c7bcf929edb74f9333</cites><orcidid>0000-0003-0035-8566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-04987-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-04987-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zongo, Floriane</creatorcontrib><creatorcontrib>Simoneau, Charles</creatorcontrib><creatorcontrib>Timercan, Anatolie</creatorcontrib><creatorcontrib>Tahan, Antoine</creatorcontrib><creatorcontrib>Brailovski, Vladimir</creatorcontrib><title>Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing processes. One of the constraints for a broader industrial use of this process is the limited knowledge of its dimensional performances and geometrical behavior, as well as the inability to predict them as a function of material, process parameters, part size, and geometry. The objective of this study is to enrich knowledge of the geometric dimensioning and tolerancing (GD&amp;T) performances of the LPBF process and to evaluate the distortion prediction capabilities of the ANSYS Additive Print ® software. To this end, a selected topologically optimized part with three different support configurations was manufactured using an EOSINT M280 printer and AlSi10Mg powder. After printing, the parts were scanned using a coordinate measuring machine (CMM) and a micro-computed tomography (μ-CT) system. The GD&amp;T calculations were carried out according to the ASME Y14.5 (2009) standard. The distortions measured by the CMM and μ-CT techniques were 0.195 mm and 0.368 mm, respectively (95% interval). After the software calibration and two numerical sensitivity studies, the same stereolithography files used to print the parts were downloaded into the ANSYS Additive Print ® software to calculate distortions caused by the process. The differences between the experimentally measured and the ANSYS-predicted distortions for a 56 mm × 58 mm × 137 mm part fell within a 0.134 mm range at a 95% interval. The fidelity of the numerical predictions, the impact of the support structures, and the differences induced by the CMM and μ-CT measurement uncertainties are presented and discussed.</description><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Computed tomography</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Coordinate measuring machines</subject><subject>Distortion</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Industrial applications</subject><subject>Lithography</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Numerical prediction</subject><subject>Original Article</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Software</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1KxDAURoMoOI6-gKuA62p-2qZ1Nww6CiMu1HVIk5uhw7SpSTsquPAdfEOfxIwV3LkIl-See0LyIXRKyTklRFwEQqggCWFxpWUhErGHJjTlPOGEZvtoQlheJFzkxSE6CmEd8ZzmxQS9L8A10PtaYwPbWvW1awN2Fm9UAI8792JiqcB8fXzaIYDBs81DTcndCmvXdK6Ftg-XuB0aiA61wZ0HU-tRswUfhoDhtYvNJpKx34AKg4fdLhyjA6s2AU5-6xQ9XV89zm-S5f3idj5bJpqXpE9sRVUOpkyN5YVWRFe5BmayrCoyA5nSLNWZYLwQJh5TLSptS1aCqURqS875FJ2N3s675wFCL9du8G28UrK0JEWes1T8S0V3yYiIPzpFbKS0dyF4sLKLb1P-TVIid1nIMQsZs5A_Wcidmo9DIcLtCvyf-p-pb-mgkGc</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zongo, Floriane</creator><creator>Simoneau, Charles</creator><creator>Timercan, Anatolie</creator><creator>Tahan, Antoine</creator><creator>Brailovski, Vladimir</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0035-8566</orcidid></search><sort><creationdate>20200301</creationdate><title>Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements</title><author>Zongo, Floriane ; Simoneau, Charles ; Timercan, Anatolie ; Tahan, Antoine ; Brailovski, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-fb1a6ed94df38ca0cb6ce2d55b85de5ac24c572387de2d1c7bcf929edb74f9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Computed tomography</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Coordinate measuring machines</topic><topic>Distortion</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Industrial applications</topic><topic>Lithography</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Numerical prediction</topic><topic>Original Article</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zongo, Floriane</creatorcontrib><creatorcontrib>Simoneau, Charles</creatorcontrib><creatorcontrib>Timercan, Anatolie</creatorcontrib><creatorcontrib>Tahan, Antoine</creatorcontrib><creatorcontrib>Brailovski, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zongo, Floriane</au><au>Simoneau, Charles</au><au>Timercan, Anatolie</au><au>Tahan, Antoine</au><au>Brailovski, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>3-4</issue><spage>1411</spage><epage>1436</epage><pages>1411-1436</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing processes. One of the constraints for a broader industrial use of this process is the limited knowledge of its dimensional performances and geometrical behavior, as well as the inability to predict them as a function of material, process parameters, part size, and geometry. The objective of this study is to enrich knowledge of the geometric dimensioning and tolerancing (GD&amp;T) performances of the LPBF process and to evaluate the distortion prediction capabilities of the ANSYS Additive Print ® software. To this end, a selected topologically optimized part with three different support configurations was manufactured using an EOSINT M280 printer and AlSi10Mg powder. After printing, the parts were scanned using a coordinate measuring machine (CMM) and a micro-computed tomography (μ-CT) system. The GD&amp;T calculations were carried out according to the ASME Y14.5 (2009) standard. The distortions measured by the CMM and μ-CT techniques were 0.195 mm and 0.368 mm, respectively (95% interval). After the software calibration and two numerical sensitivity studies, the same stereolithography files used to print the parts were downloaded into the ANSYS Additive Print ® software to calculate distortions caused by the process. The differences between the experimentally measured and the ANSYS-predicted distortions for a 56 mm × 58 mm × 137 mm part fell within a 0.134 mm range at a 95% interval. The fidelity of the numerical predictions, the impact of the support structures, and the differences induced by the CMM and μ-CT measurement uncertainties are presented and discussed.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-04987-7</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-0035-8566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-03, Vol.107 (3-4), p.1411-1436
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490866247
source SpringerLink Journals - AutoHoldings
subjects Aluminum base alloys
CAE) and Design
Computed tomography
Computer-Aided Engineering (CAD
Coordinate measuring machines
Distortion
Engineering
Industrial and Production Engineering
Industrial applications
Lithography
Mechanical Engineering
Media Management
Numerical prediction
Original Article
Powder beds
Process parameters
Rapid prototyping
Software
title Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20deviations%20of%20laser%20powder%20bed%E2%80%93fused%20AlSi10Mg%20components:%20numerical%20predictions%20versus%20experimental%20measurements&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zongo,%20Floriane&rft.date=2020-03-01&rft.volume=107&rft.issue=3-4&rft.spage=1411&rft.epage=1436&rft.pages=1411-1436&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-04987-7&rft_dat=%3Cproquest_cross%3E2387920714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387920714&rft_id=info:pmid/&rfr_iscdi=true