Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process
In the present study, an axisymmetric model for temperature distribution in single discharge of ultrasonic vibration-assisted electrical discharge machining process has been developed using finite-element method to get the dimensions of generated discharge crater on the surface of workpiece and prov...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2018-05, Vol.96 (5-8), p.2657-2669 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2669 |
---|---|
container_issue | 5-8 |
container_start_page | 2657 |
container_title | International journal of advanced manufacturing technology |
container_volume | 96 |
creator | Shabgard, Mohammad Reza Gholipoor, Ahad Mohammadpourfard, Mousa |
description | In the present study, an axisymmetric model for temperature distribution in single discharge of ultrasonic vibration-assisted electrical discharge machining process has been developed using finite-element method to get the dimensions of generated discharge crater on the surface of workpiece and provide a FEM model for material removal rate at this process. For this purpose, a new mathematical model for plasma channel radius was also developed and used in finite-element modeling. Then, due to good correlation between numerical and experimental results of recast layer thickness with maximum error of 6.1%, the developed finite-element model along with performed experiments was used to investigate the effects of applying ultrasonic vibrations to tool electrode on created crater dimensions, plasma flushing efficiency, and recast layer thickness at different pulse currents and durations. Also, the effects of pulse current and duration on depth, radius, and volume of created craters on machined surface at ultrasonic vibration-assisted electrical discharge machining (EDM) process was investigated. The experimental and numerical results showed that applying ultrasonic vibrations to tool electrode at EDM process increases generated crater depth and volume and plasma flushing efficiency and decreases generated crater radius and recast layer thickness. |
doi_str_mv | 10.1007/s00170-017-1487-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490864760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028181730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-abbc5aef16dc6d4f9615922f52164952cf25ea667905845b8866a45d96b9cdac3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKs_wF3A9Wjek1mK1gdU3eg6ZDJJO9ImNcmIBX-8aSu4spt7ubnfORdyADjH6BIjVF8lhHCNqlIqzGRd0QMwwozSiiLMD8EIESErWgt5DE5Sei-0wEKOwPfzsLSxN3oBte-g_VqVaWl9Lg8pD90aBgfz3ELrnDU5bcZhkaNOwfcGfvZt1LkPfrvIISxg8HCpzbz3vZ9BM9dRm1w8U-7NFprcPsFVDMamdAqOnF4ke_bbx-DtbvJ681BNX-4fb66nlaE1yZVuW8O1dVh0RnTMNQLzhhDHCRas4cQ4wq0Wom4Ql4y3UgqhGe8a0Tam04aOwcXOt9z9GGzK6j0M0ZeTirAGScFqgfZSRBDMGsz4XgoRiSWu6cYL7ygTQ0rROrUq36rjWmGkNoGpXWCqFLUJTNGiITtNKqyf2fjn_L_oBznwmHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262149145</pqid></control><display><type>article</type><title>Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process</title><source>Springer Nature - Complete Springer Journals</source><creator>Shabgard, Mohammad Reza ; Gholipoor, Ahad ; Mohammadpourfard, Mousa</creator><creatorcontrib>Shabgard, Mohammad Reza ; Gholipoor, Ahad ; Mohammadpourfard, Mousa</creatorcontrib><description>In the present study, an axisymmetric model for temperature distribution in single discharge of ultrasonic vibration-assisted electrical discharge machining process has been developed using finite-element method to get the dimensions of generated discharge crater on the surface of workpiece and provide a FEM model for material removal rate at this process. For this purpose, a new mathematical model for plasma channel radius was also developed and used in finite-element modeling. Then, due to good correlation between numerical and experimental results of recast layer thickness with maximum error of 6.1%, the developed finite-element model along with performed experiments was used to investigate the effects of applying ultrasonic vibrations to tool electrode on created crater dimensions, plasma flushing efficiency, and recast layer thickness at different pulse currents and durations. Also, the effects of pulse current and duration on depth, radius, and volume of created craters on machined surface at ultrasonic vibration-assisted electrical discharge machining (EDM) process was investigated. The experimental and numerical results showed that applying ultrasonic vibrations to tool electrode at EDM process increases generated crater depth and volume and plasma flushing efficiency and decreases generated crater radius and recast layer thickness.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-017-1487-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Craters ; EDM electrodes ; Electric discharge machining ; Engineering ; Finite element method ; Flushing ; Industrial and Production Engineering ; Machine shops ; Material removal rate (machining) ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Temperature distribution ; Thickness ; Ultrasonic vibration ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2018-05, Vol.96 (5-8), p.2657-2669</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-abbc5aef16dc6d4f9615922f52164952cf25ea667905845b8866a45d96b9cdac3</citedby><cites>FETCH-LOGICAL-c372t-abbc5aef16dc6d4f9615922f52164952cf25ea667905845b8866a45d96b9cdac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-017-1487-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-017-1487-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shabgard, Mohammad Reza</creatorcontrib><creatorcontrib>Gholipoor, Ahad</creatorcontrib><creatorcontrib>Mohammadpourfard, Mousa</creatorcontrib><title>Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the present study, an axisymmetric model for temperature distribution in single discharge of ultrasonic vibration-assisted electrical discharge machining process has been developed using finite-element method to get the dimensions of generated discharge crater on the surface of workpiece and provide a FEM model for material removal rate at this process. For this purpose, a new mathematical model for plasma channel radius was also developed and used in finite-element modeling. Then, due to good correlation between numerical and experimental results of recast layer thickness with maximum error of 6.1%, the developed finite-element model along with performed experiments was used to investigate the effects of applying ultrasonic vibrations to tool electrode on created crater dimensions, plasma flushing efficiency, and recast layer thickness at different pulse currents and durations. Also, the effects of pulse current and duration on depth, radius, and volume of created craters on machined surface at ultrasonic vibration-assisted electrical discharge machining (EDM) process was investigated. The experimental and numerical results showed that applying ultrasonic vibrations to tool electrode at EDM process increases generated crater depth and volume and plasma flushing efficiency and decreases generated crater radius and recast layer thickness.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Craters</subject><subject>EDM electrodes</subject><subject>Electric discharge machining</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flushing</subject><subject>Industrial and Production Engineering</subject><subject>Machine shops</subject><subject>Material removal rate (machining)</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Temperature distribution</subject><subject>Thickness</subject><subject>Ultrasonic vibration</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMoWKs_wF3A9Wjek1mK1gdU3eg6ZDJJO9ImNcmIBX-8aSu4spt7ubnfORdyADjH6BIjVF8lhHCNqlIqzGRd0QMwwozSiiLMD8EIESErWgt5DE5Sei-0wEKOwPfzsLSxN3oBte-g_VqVaWl9Lg8pD90aBgfz3ELrnDU5bcZhkaNOwfcGfvZt1LkPfrvIISxg8HCpzbz3vZ9BM9dRm1w8U-7NFprcPsFVDMamdAqOnF4ke_bbx-DtbvJ681BNX-4fb66nlaE1yZVuW8O1dVh0RnTMNQLzhhDHCRas4cQ4wq0Wom4Ql4y3UgqhGe8a0Tam04aOwcXOt9z9GGzK6j0M0ZeTirAGScFqgfZSRBDMGsz4XgoRiSWu6cYL7ygTQ0rROrUq36rjWmGkNoGpXWCqFLUJTNGiITtNKqyf2fjn_L_oBznwmHI</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Shabgard, Mohammad Reza</creator><creator>Gholipoor, Ahad</creator><creator>Mohammadpourfard, Mousa</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180501</creationdate><title>Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process</title><author>Shabgard, Mohammad Reza ; Gholipoor, Ahad ; Mohammadpourfard, Mousa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-abbc5aef16dc6d4f9615922f52164952cf25ea667905845b8866a45d96b9cdac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Craters</topic><topic>EDM electrodes</topic><topic>Electric discharge machining</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flushing</topic><topic>Industrial and Production Engineering</topic><topic>Machine shops</topic><topic>Material removal rate (machining)</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Temperature distribution</topic><topic>Thickness</topic><topic>Ultrasonic vibration</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabgard, Mohammad Reza</creatorcontrib><creatorcontrib>Gholipoor, Ahad</creatorcontrib><creatorcontrib>Mohammadpourfard, Mousa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabgard, Mohammad Reza</au><au>Gholipoor, Ahad</au><au>Mohammadpourfard, Mousa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>96</volume><issue>5-8</issue><spage>2657</spage><epage>2669</epage><pages>2657-2669</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the present study, an axisymmetric model for temperature distribution in single discharge of ultrasonic vibration-assisted electrical discharge machining process has been developed using finite-element method to get the dimensions of generated discharge crater on the surface of workpiece and provide a FEM model for material removal rate at this process. For this purpose, a new mathematical model for plasma channel radius was also developed and used in finite-element modeling. Then, due to good correlation between numerical and experimental results of recast layer thickness with maximum error of 6.1%, the developed finite-element model along with performed experiments was used to investigate the effects of applying ultrasonic vibrations to tool electrode on created crater dimensions, plasma flushing efficiency, and recast layer thickness at different pulse currents and durations. Also, the effects of pulse current and duration on depth, radius, and volume of created craters on machined surface at ultrasonic vibration-assisted electrical discharge machining (EDM) process was investigated. The experimental and numerical results showed that applying ultrasonic vibrations to tool electrode at EDM process increases generated crater depth and volume and plasma flushing efficiency and decreases generated crater radius and recast layer thickness.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-017-1487-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2018-05, Vol.96 (5-8), p.2657-2669 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490864760 |
source | Springer Nature - Complete Springer Journals |
subjects | CAE) and Design Computer-Aided Engineering (CAD Craters EDM electrodes Electric discharge machining Engineering Finite element method Flushing Industrial and Production Engineering Machine shops Material removal rate (machining) Mathematical models Mechanical Engineering Media Management Original Article Temperature distribution Thickness Ultrasonic vibration Workpieces |
title | Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20experimental%20study%20of%20the%20effects%20of%20ultrasonic%20vibrations%20of%20tool%20on%20machining%20characteristics%20of%20EDM%20process&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Shabgard,%20Mohammad%20Reza&rft.date=2018-05-01&rft.volume=96&rft.issue=5-8&rft.spage=2657&rft.epage=2669&rft.pages=2657-2669&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-017-1487-3&rft_dat=%3Cproquest_cross%3E2028181730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262149145&rft_id=info:pmid/&rfr_iscdi=true |