Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals

In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-03, Vol.107 (5-6), p.2177-2187
Hauptverfasser: Wu, Renhao, Li, Meng, Cai, Sheng, Liu, Xinmei, Yang, Mei, Huang, Wenshuai, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2187
container_issue 5-6
container_start_page 2177
container_title International journal of advanced manufacturing technology
container_volume 107
creator Wu, Renhao
Li, Meng
Cai, Sheng
Liu, Xinmei
Yang, Mei
Huang, Wenshuai
Chen, Jun
description In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.
doi_str_mv 10.1007/s00170-020-05144-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490862943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490862943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</originalsourceid><addsrcrecordid>eNp9kctqGzEUhkVIoE7SF-hKkPW0us1IszQmvUCgm2YtZOnIlvFIjiRjvOsbdNE3zJNUtgPdZSGO4Hzfvzg_Qp8o-UwJkV8KIVSSjrD2eipEd7hCMyo47zih_TWaETaojstBfUC3pWwaPtBBzdCfeTTbYw3WbPGUHGyxTxlXmHaQTd1nwLsMLtgaUsQhYp_f_qWG_Pr7rykllAqu7WyGCWI154gpxBU-hLrG5RjtOqeY9gUvU3SnRfLYhWZOYWsyLmuAiidoarlHN74N-Pg279Dz18dfi-_d089vPxbzp85yIWtHmXTKOs9AMCoA1CBg6WUvnKNm9IMYYVwq2wNVYpBWGmqV8c4q4YkaDON36OGSu8vpZQ-l6k3a53aLopkYG8PGdr33KK5k33OqaKPYhbI5lZLB610Ok8lHTYk-1aMv9ehWjz7Xow9N4hepNDiuIP-Pfsf6B639mD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387553181</pqid></control><display><type>article</type><title>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Renhao ; Li, Meng ; Cai, Sheng ; Liu, Xinmei ; Yang, Mei ; Huang, Wenshuai ; Chen, Jun</creator><creatorcontrib>Wu, Renhao ; Li, Meng ; Cai, Sheng ; Liu, Xinmei ; Yang, Mei ; Huang, Wenshuai ; Chen, Jun</creatorcontrib><description>In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05144-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Bonding ; CAE) and Design ; Computer-Aided Engineering (CAD ; Dissimilar metals ; Engineering ; Forming techniques ; Heat generation ; Industrial and Production Engineering ; Iterative methods ; Laminates ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Prediction models ; Process parameters ; Temperature effects</subject><ispartof>International journal of advanced manufacturing technology, 2020-03, Vol.107 (5-6), p.2177-2187</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</citedby><cites>FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05144-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05144-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Renhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Cai, Sheng</creatorcontrib><creatorcontrib>Liu, Xinmei</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Huang, Wenshuai</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.</description><subject>Bonding</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Dissimilar metals</subject><subject>Engineering</subject><subject>Forming techniques</subject><subject>Heat generation</subject><subject>Industrial and Production Engineering</subject><subject>Iterative methods</subject><subject>Laminates</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Temperature effects</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctqGzEUhkVIoE7SF-hKkPW0us1IszQmvUCgm2YtZOnIlvFIjiRjvOsbdNE3zJNUtgPdZSGO4Hzfvzg_Qp8o-UwJkV8KIVSSjrD2eipEd7hCMyo47zih_TWaETaojstBfUC3pWwaPtBBzdCfeTTbYw3WbPGUHGyxTxlXmHaQTd1nwLsMLtgaUsQhYp_f_qWG_Pr7rykllAqu7WyGCWI154gpxBU-hLrG5RjtOqeY9gUvU3SnRfLYhWZOYWsyLmuAiidoarlHN74N-Pg279Dz18dfi-_d089vPxbzp85yIWtHmXTKOs9AMCoA1CBg6WUvnKNm9IMYYVwq2wNVYpBWGmqV8c4q4YkaDON36OGSu8vpZQ-l6k3a53aLopkYG8PGdr33KK5k33OqaKPYhbI5lZLB610Ok8lHTYk-1aMv9ehWjz7Xow9N4hepNDiuIP-Pfsf6B639mD4</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Renhao</creator><creator>Li, Meng</creator><creator>Cai, Sheng</creator><creator>Liu, Xinmei</creator><creator>Yang, Mei</creator><creator>Huang, Wenshuai</creator><creator>Chen, Jun</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200301</creationdate><title>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</title><author>Wu, Renhao ; Li, Meng ; Cai, Sheng ; Liu, Xinmei ; Yang, Mei ; Huang, Wenshuai ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Dissimilar metals</topic><topic>Engineering</topic><topic>Forming techniques</topic><topic>Heat generation</topic><topic>Industrial and Production Engineering</topic><topic>Iterative methods</topic><topic>Laminates</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Renhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Cai, Sheng</creatorcontrib><creatorcontrib>Liu, Xinmei</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Huang, Wenshuai</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Renhao</au><au>Li, Meng</au><au>Cai, Sheng</au><au>Liu, Xinmei</au><au>Yang, Mei</au><au>Huang, Wenshuai</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>5-6</issue><spage>2177</spage><epage>2187</epage><pages>2177-2187</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05144-w</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-03, Vol.107 (5-6), p.2177-2187
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490862943
source Springer Nature - Complete Springer Journals
subjects Bonding
CAE) and Design
Computer-Aided Engineering (CAD
Dissimilar metals
Engineering
Forming techniques
Heat generation
Industrial and Production Engineering
Iterative methods
Laminates
Mathematical models
Mechanical Engineering
Media Management
Original Article
Prediction models
Process parameters
Temperature effects
title Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20model%20for%20temperature%20prediction%20in%20friction%20stir%E2%80%93assisted%20incremental%20forming%20with%20synchronous%20bonding%20of%20dissimilar%20sheet%20metals&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Wu,%20Renhao&rft.date=2020-03-01&rft.volume=107&rft.issue=5-6&rft.spage=2177&rft.epage=2187&rft.pages=2177-2187&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05144-w&rft_dat=%3Cproquest_cross%3E2490862943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387553181&rft_id=info:pmid/&rfr_iscdi=true