Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals
In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-03, Vol.107 (5-6), p.2177-2187 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2187 |
---|---|
container_issue | 5-6 |
container_start_page | 2177 |
container_title | International journal of advanced manufacturing technology |
container_volume | 107 |
creator | Wu, Renhao Li, Meng Cai, Sheng Liu, Xinmei Yang, Mei Huang, Wenshuai Chen, Jun |
description | In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation. |
doi_str_mv | 10.1007/s00170-020-05144-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490862943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490862943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</originalsourceid><addsrcrecordid>eNp9kctqGzEUhkVIoE7SF-hKkPW0us1IszQmvUCgm2YtZOnIlvFIjiRjvOsbdNE3zJNUtgPdZSGO4Hzfvzg_Qp8o-UwJkV8KIVSSjrD2eipEd7hCMyo47zih_TWaETaojstBfUC3pWwaPtBBzdCfeTTbYw3WbPGUHGyxTxlXmHaQTd1nwLsMLtgaUsQhYp_f_qWG_Pr7rykllAqu7WyGCWI154gpxBU-hLrG5RjtOqeY9gUvU3SnRfLYhWZOYWsyLmuAiidoarlHN74N-Pg279Dz18dfi-_d089vPxbzp85yIWtHmXTKOs9AMCoA1CBg6WUvnKNm9IMYYVwq2wNVYpBWGmqV8c4q4YkaDON36OGSu8vpZQ-l6k3a53aLopkYG8PGdr33KK5k33OqaKPYhbI5lZLB610Ok8lHTYk-1aMv9ehWjz7Xow9N4hepNDiuIP-Pfsf6B639mD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387553181</pqid></control><display><type>article</type><title>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Renhao ; Li, Meng ; Cai, Sheng ; Liu, Xinmei ; Yang, Mei ; Huang, Wenshuai ; Chen, Jun</creator><creatorcontrib>Wu, Renhao ; Li, Meng ; Cai, Sheng ; Liu, Xinmei ; Yang, Mei ; Huang, Wenshuai ; Chen, Jun</creatorcontrib><description>In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05144-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Bonding ; CAE) and Design ; Computer-Aided Engineering (CAD ; Dissimilar metals ; Engineering ; Forming techniques ; Heat generation ; Industrial and Production Engineering ; Iterative methods ; Laminates ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Prediction models ; Process parameters ; Temperature effects</subject><ispartof>International journal of advanced manufacturing technology, 2020-03, Vol.107 (5-6), p.2177-2187</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</citedby><cites>FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05144-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05144-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Renhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Cai, Sheng</creatorcontrib><creatorcontrib>Liu, Xinmei</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Huang, Wenshuai</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.</description><subject>Bonding</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Dissimilar metals</subject><subject>Engineering</subject><subject>Forming techniques</subject><subject>Heat generation</subject><subject>Industrial and Production Engineering</subject><subject>Iterative methods</subject><subject>Laminates</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Temperature effects</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctqGzEUhkVIoE7SF-hKkPW0us1IszQmvUCgm2YtZOnIlvFIjiRjvOsbdNE3zJNUtgPdZSGO4Hzfvzg_Qp8o-UwJkV8KIVSSjrD2eipEd7hCMyo47zih_TWaETaojstBfUC3pWwaPtBBzdCfeTTbYw3WbPGUHGyxTxlXmHaQTd1nwLsMLtgaUsQhYp_f_qWG_Pr7rykllAqu7WyGCWI154gpxBU-hLrG5RjtOqeY9gUvU3SnRfLYhWZOYWsyLmuAiidoarlHN74N-Pg279Dz18dfi-_d089vPxbzp85yIWtHmXTKOs9AMCoA1CBg6WUvnKNm9IMYYVwq2wNVYpBWGmqV8c4q4YkaDON36OGSu8vpZQ-l6k3a53aLopkYG8PGdr33KK5k33OqaKPYhbI5lZLB610Ok8lHTYk-1aMv9ehWjz7Xow9N4hepNDiuIP-Pfsf6B639mD4</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Renhao</creator><creator>Li, Meng</creator><creator>Cai, Sheng</creator><creator>Liu, Xinmei</creator><creator>Yang, Mei</creator><creator>Huang, Wenshuai</creator><creator>Chen, Jun</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200301</creationdate><title>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</title><author>Wu, Renhao ; Li, Meng ; Cai, Sheng ; Liu, Xinmei ; Yang, Mei ; Huang, Wenshuai ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-127d8cdf2e4214ee864ebf754dd1a9f649e9b8c5e18467c7a1c8afdc84f086a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Dissimilar metals</topic><topic>Engineering</topic><topic>Forming techniques</topic><topic>Heat generation</topic><topic>Industrial and Production Engineering</topic><topic>Iterative methods</topic><topic>Laminates</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Renhao</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Cai, Sheng</creatorcontrib><creatorcontrib>Liu, Xinmei</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Huang, Wenshuai</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Renhao</au><au>Li, Meng</au><au>Cai, Sheng</au><au>Liu, Xinmei</au><au>Yang, Mei</au><au>Huang, Wenshuai</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>5-6</issue><spage>2177</spage><epage>2187</epage><pages>2177-2187</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In the present work, a novel process of friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals DC05 and AA5052-H32 has been conducted. The separate dissimilar sheet layers are bonded together to become a laminate sheet with a part simultaneously fabricated by incremental forming. Since the temperature level is a great concern to affect the formability, an analytical heat generation and transfer model is established for temperature prediction combined with different process parameters. Iterative formulae are implemented and the numerical results are obtained to reflect the evolution of maximum temperature during the whole processing period. It is found that larger step down, rotational speed, and forming angle with lower feeding rate will significantly cause higher process temperature, which proves that the proposed model satisfies the need of a prior of the process window. Micro IMC distribution is experimentally measured at different positions to verify the effect of temperature, which also shows good applicability. The proposed temperature prediction model is also valuable for other incremental sheet forming processes with high-speed tool rotation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05144-w</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-03, Vol.107 (5-6), p.2177-2187 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490862943 |
source | Springer Nature - Complete Springer Journals |
subjects | Bonding CAE) and Design Computer-Aided Engineering (CAD Dissimilar metals Engineering Forming techniques Heat generation Industrial and Production Engineering Iterative methods Laminates Mathematical models Mechanical Engineering Media Management Original Article Prediction models Process parameters Temperature effects |
title | Analytical model for temperature prediction in friction stir–assisted incremental forming with synchronous bonding of dissimilar sheet metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20model%20for%20temperature%20prediction%20in%20friction%20stir%E2%80%93assisted%20incremental%20forming%20with%20synchronous%20bonding%20of%20dissimilar%20sheet%20metals&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Wu,%20Renhao&rft.date=2020-03-01&rft.volume=107&rft.issue=5-6&rft.spage=2177&rft.epage=2187&rft.pages=2177-2187&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05144-w&rft_dat=%3Cproquest_cross%3E2490862943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387553181&rft_id=info:pmid/&rfr_iscdi=true |