Grinding hardened steel using MQL associated with cleaning system and cBN wheel
The minimum quantity lubrication (MQL) is one of the most promising alternative techniques to replace the conventional application of cutting fluids. However, its use in grinding is still a challenge, as overheating and wheel clogging occur, leading to workpiece quality worsening. This work investig...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-03, Vol.107 (5-6), p.2065-2080 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2080 |
---|---|
container_issue | 5-6 |
container_start_page | 2065 |
container_title | International journal of advanced manufacturing technology |
container_volume | 107 |
creator | Javaroni, Rafael Liberatti Lopes, José Claudio Garcia, Mateus Vinicius Ribeiro, Fernando Sabino Fonteque de Angelo Sanchez, Luiz Eduardo de Mello, Hamilton José Aguiar, Paulo Roberto Bianchi, Eduardo Carlos |
description | The minimum quantity lubrication (MQL) is one of the most promising alternative techniques to replace the conventional application of cutting fluids. However, its use in grinding is still a challenge, as overheating and wheel clogging occur, leading to workpiece quality worsening. This work investigates a wheel cleaning jet associated with the MQL (MQL+WCJ) at three flow rates in grinding of AISI 4340 hardened steel with a cBN wheel, comparing the results with MQL and conventional methods. The output parameters assessed were workpiece surface roughness, roundness deviation, and microhardness, diametrical wheel wear, acoustic emission, and grinding power, and the machined surfaces were analyzed through microscopy techniques (optical, scanning electron, and confocal). The MQL+WCJ outperformed MQL in all the tested conditions. The application of the wheel cleaning jet reduced by up to 73% the wheel wear, 69% the surface roughness, 45% the roundness deviation, 60% the acoustic emission, and 24% the grinding power, regarding MQL without wheel cleaning, contributing to a more environmentally friendly and efficient grinding. |
doi_str_mv | 10.1007/s00170-020-05169-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490862311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387560134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-57b12da8ad827e76744b66fcf59ab9dec1e842b92564b9d4d5b0dc2439521e713</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA82om__eoRatQLYKeQzbJtlvabU22SL-9WVfw1sMwzMzvvYGH0DWQWyBE3SVCQJGC0FwCZFnACRoBZ6xgBMQpGhEqdcGU1OfoIqVVxiVIPULzaWxa37QLvLTRhzZ4nLoQ1nif-uXr-wzblLausV0-fTfdErt1sG1_TIeMbrBtPXYPb_h7mXWX6Ky26xSu_voYfT49fkyei9l8-jK5nxWOcdUVQlVAvdXWa6qCkorzSsra1aK0VemDg6A5rUoqJM8z96Ii3lHOSkEhKGBjdDP47uL2ax9SZ1bbfWzzS0N5SbSkDI5TTCshCTCeKTpQLm5TiqE2u9hsbDwYIKaP1wzxmhyv-Y3X9NZsEKUMt4sQ_62PqH4AkeJ7dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387560134</pqid></control><display><type>article</type><title>Grinding hardened steel using MQL associated with cleaning system and cBN wheel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Javaroni, Rafael Liberatti ; Lopes, José Claudio ; Garcia, Mateus Vinicius ; Ribeiro, Fernando Sabino Fonteque ; de Angelo Sanchez, Luiz Eduardo ; de Mello, Hamilton José ; Aguiar, Paulo Roberto ; Bianchi, Eduardo Carlos</creator><creatorcontrib>Javaroni, Rafael Liberatti ; Lopes, José Claudio ; Garcia, Mateus Vinicius ; Ribeiro, Fernando Sabino Fonteque ; de Angelo Sanchez, Luiz Eduardo ; de Mello, Hamilton José ; Aguiar, Paulo Roberto ; Bianchi, Eduardo Carlos</creatorcontrib><description>The minimum quantity lubrication (MQL) is one of the most promising alternative techniques to replace the conventional application of cutting fluids. However, its use in grinding is still a challenge, as overheating and wheel clogging occur, leading to workpiece quality worsening. This work investigates a wheel cleaning jet associated with the MQL (MQL+WCJ) at three flow rates in grinding of AISI 4340 hardened steel with a cBN wheel, comparing the results with MQL and conventional methods. The output parameters assessed were workpiece surface roughness, roundness deviation, and microhardness, diametrical wheel wear, acoustic emission, and grinding power, and the machined surfaces were analyzed through microscopy techniques (optical, scanning electron, and confocal). The MQL+WCJ outperformed MQL in all the tested conditions. The application of the wheel cleaning jet reduced by up to 73% the wheel wear, 69% the surface roughness, 45% the roundness deviation, 60% the acoustic emission, and 24% the grinding power, regarding MQL without wheel cleaning, contributing to a more environmentally friendly and efficient grinding.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05169-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Acoustic emission ; CAE) and Design ; Cleaning ; Computer-Aided Engineering (CAD ; Cutting fluids ; Deviation ; Emission analysis ; Engineering ; Flow velocity ; Grinding wheels ; High strength low alloy steels ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Microhardness ; Nickel chromium molybdenum steels ; Original Article ; Overheating ; Roundness ; Surface roughness ; Wear ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2020-03, Vol.107 (5-6), p.2065-2080</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-57b12da8ad827e76744b66fcf59ab9dec1e842b92564b9d4d5b0dc2439521e713</citedby><cites>FETCH-LOGICAL-c347t-57b12da8ad827e76744b66fcf59ab9dec1e842b92564b9d4d5b0dc2439521e713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05169-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05169-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Javaroni, Rafael Liberatti</creatorcontrib><creatorcontrib>Lopes, José Claudio</creatorcontrib><creatorcontrib>Garcia, Mateus Vinicius</creatorcontrib><creatorcontrib>Ribeiro, Fernando Sabino Fonteque</creatorcontrib><creatorcontrib>de Angelo Sanchez, Luiz Eduardo</creatorcontrib><creatorcontrib>de Mello, Hamilton José</creatorcontrib><creatorcontrib>Aguiar, Paulo Roberto</creatorcontrib><creatorcontrib>Bianchi, Eduardo Carlos</creatorcontrib><title>Grinding hardened steel using MQL associated with cleaning system and cBN wheel</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The minimum quantity lubrication (MQL) is one of the most promising alternative techniques to replace the conventional application of cutting fluids. However, its use in grinding is still a challenge, as overheating and wheel clogging occur, leading to workpiece quality worsening. This work investigates a wheel cleaning jet associated with the MQL (MQL+WCJ) at three flow rates in grinding of AISI 4340 hardened steel with a cBN wheel, comparing the results with MQL and conventional methods. The output parameters assessed were workpiece surface roughness, roundness deviation, and microhardness, diametrical wheel wear, acoustic emission, and grinding power, and the machined surfaces were analyzed through microscopy techniques (optical, scanning electron, and confocal). The MQL+WCJ outperformed MQL in all the tested conditions. The application of the wheel cleaning jet reduced by up to 73% the wheel wear, 69% the surface roughness, 45% the roundness deviation, 60% the acoustic emission, and 24% the grinding power, regarding MQL without wheel cleaning, contributing to a more environmentally friendly and efficient grinding.</description><subject>Acoustic emission</subject><subject>CAE) and Design</subject><subject>Cleaning</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting fluids</subject><subject>Deviation</subject><subject>Emission analysis</subject><subject>Engineering</subject><subject>Flow velocity</subject><subject>Grinding wheels</subject><subject>High strength low alloy steels</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Nickel chromium molybdenum steels</subject><subject>Original Article</subject><subject>Overheating</subject><subject>Roundness</subject><subject>Surface roughness</subject><subject>Wear</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA82om__eoRatQLYKeQzbJtlvabU22SL-9WVfw1sMwzMzvvYGH0DWQWyBE3SVCQJGC0FwCZFnACRoBZ6xgBMQpGhEqdcGU1OfoIqVVxiVIPULzaWxa37QLvLTRhzZ4nLoQ1nif-uXr-wzblLausV0-fTfdErt1sG1_TIeMbrBtPXYPb_h7mXWX6Ky26xSu_voYfT49fkyei9l8-jK5nxWOcdUVQlVAvdXWa6qCkorzSsra1aK0VemDg6A5rUoqJM8z96Ii3lHOSkEhKGBjdDP47uL2ax9SZ1bbfWzzS0N5SbSkDI5TTCshCTCeKTpQLm5TiqE2u9hsbDwYIKaP1wzxmhyv-Y3X9NZsEKUMt4sQ_62PqH4AkeJ7dg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Javaroni, Rafael Liberatti</creator><creator>Lopes, José Claudio</creator><creator>Garcia, Mateus Vinicius</creator><creator>Ribeiro, Fernando Sabino Fonteque</creator><creator>de Angelo Sanchez, Luiz Eduardo</creator><creator>de Mello, Hamilton José</creator><creator>Aguiar, Paulo Roberto</creator><creator>Bianchi, Eduardo Carlos</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200301</creationdate><title>Grinding hardened steel using MQL associated with cleaning system and cBN wheel</title><author>Javaroni, Rafael Liberatti ; Lopes, José Claudio ; Garcia, Mateus Vinicius ; Ribeiro, Fernando Sabino Fonteque ; de Angelo Sanchez, Luiz Eduardo ; de Mello, Hamilton José ; Aguiar, Paulo Roberto ; Bianchi, Eduardo Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-57b12da8ad827e76744b66fcf59ab9dec1e842b92564b9d4d5b0dc2439521e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic emission</topic><topic>CAE) and Design</topic><topic>Cleaning</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting fluids</topic><topic>Deviation</topic><topic>Emission analysis</topic><topic>Engineering</topic><topic>Flow velocity</topic><topic>Grinding wheels</topic><topic>High strength low alloy steels</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Nickel chromium molybdenum steels</topic><topic>Original Article</topic><topic>Overheating</topic><topic>Roundness</topic><topic>Surface roughness</topic><topic>Wear</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javaroni, Rafael Liberatti</creatorcontrib><creatorcontrib>Lopes, José Claudio</creatorcontrib><creatorcontrib>Garcia, Mateus Vinicius</creatorcontrib><creatorcontrib>Ribeiro, Fernando Sabino Fonteque</creatorcontrib><creatorcontrib>de Angelo Sanchez, Luiz Eduardo</creatorcontrib><creatorcontrib>de Mello, Hamilton José</creatorcontrib><creatorcontrib>Aguiar, Paulo Roberto</creatorcontrib><creatorcontrib>Bianchi, Eduardo Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javaroni, Rafael Liberatti</au><au>Lopes, José Claudio</au><au>Garcia, Mateus Vinicius</au><au>Ribeiro, Fernando Sabino Fonteque</au><au>de Angelo Sanchez, Luiz Eduardo</au><au>de Mello, Hamilton José</au><au>Aguiar, Paulo Roberto</au><au>Bianchi, Eduardo Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grinding hardened steel using MQL associated with cleaning system and cBN wheel</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>5-6</issue><spage>2065</spage><epage>2080</epage><pages>2065-2080</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The minimum quantity lubrication (MQL) is one of the most promising alternative techniques to replace the conventional application of cutting fluids. However, its use in grinding is still a challenge, as overheating and wheel clogging occur, leading to workpiece quality worsening. This work investigates a wheel cleaning jet associated with the MQL (MQL+WCJ) at three flow rates in grinding of AISI 4340 hardened steel with a cBN wheel, comparing the results with MQL and conventional methods. The output parameters assessed were workpiece surface roughness, roundness deviation, and microhardness, diametrical wheel wear, acoustic emission, and grinding power, and the machined surfaces were analyzed through microscopy techniques (optical, scanning electron, and confocal). The MQL+WCJ outperformed MQL in all the tested conditions. The application of the wheel cleaning jet reduced by up to 73% the wheel wear, 69% the surface roughness, 45% the roundness deviation, 60% the acoustic emission, and 24% the grinding power, regarding MQL without wheel cleaning, contributing to a more environmentally friendly and efficient grinding.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05169-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-03, Vol.107 (5-6), p.2065-2080 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490862311 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acoustic emission CAE) and Design Cleaning Computer-Aided Engineering (CAD Cutting fluids Deviation Emission analysis Engineering Flow velocity Grinding wheels High strength low alloy steels Industrial and Production Engineering Mechanical Engineering Media Management Microhardness Nickel chromium molybdenum steels Original Article Overheating Roundness Surface roughness Wear Workpieces |
title | Grinding hardened steel using MQL associated with cleaning system and cBN wheel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grinding%20hardened%20steel%20using%20MQL%20associated%20with%20cleaning%20system%20and%20cBN%20wheel&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Javaroni,%20Rafael%20Liberatti&rft.date=2020-03-01&rft.volume=107&rft.issue=5-6&rft.spage=2065&rft.epage=2080&rft.pages=2065-2080&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05169-1&rft_dat=%3Cproquest_cross%3E2387560134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387560134&rft_id=info:pmid/&rfr_iscdi=true |