Semi-supervised modeling and compensation for the thermal error of precision feed axes

The data-driven modeling of thermal error-temperature relationship is key to achieve ideal compensation effect for precision machine tools. The improvements of the modeling quality are limited only depending on ameliorating the regression algorithm with same training data, and more information must...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-10, Vol.104 (9-12), p.4629-4640
Hauptverfasser: Lei, Mohan, Yang, Jun, Wang, Shuai, Zhao, Liang, Xia, Ping, Jiang, Gedong, Mei, Xuesong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4640
container_issue 9-12
container_start_page 4629
container_title International journal of advanced manufacturing technology
container_volume 104
creator Lei, Mohan
Yang, Jun
Wang, Shuai
Zhao, Liang
Xia, Ping
Jiang, Gedong
Mei, Xuesong
description The data-driven modeling of thermal error-temperature relationship is key to achieve ideal compensation effect for precision machine tools. The improvements of the modeling quality are limited only depending on ameliorating the regression algorithm with same training data, and more information must be introduced for further improvements. The thermal error data, in particular for the feed axes, are usually high-cost and scarce, but the temperature data are usually readily available. Here, it is indicated that an extra information, the low-cost unlabeled temperature data which are easily accessible under various operation conditions, can be exploited to enrich the thermal error modeling data for the feed axes. Then the co-training semi-supervised support vector machines for regression (COSVR), which can include the pattern information of the unlabeled data in modeling, is employed to establish the thermal error-temperature model for feed axes. Thermal experiments were conducted on two cases of different axes, and the labeled data of temperature and thermal error and the unlabeled data of only temperature were obtained under different operating speeds. The linear thermal errors were modeled by COSVR using all the data, and by the genetic algorithm SVR (GA-SVR) using only the labeled data, respectively. Comparisons showed that the COSVR model outperformed the GA-SVR model by 11.45% and 34.14% in RMSE on the two axes, respectively, and by 53.03% of maximum thermal error reduction in the compensation.
doi_str_mv 10.1007/s00170-019-04341-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490847795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282304185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ed3bb7d861074020f3d43df9ae60e9eb8ce85c5803998a44a4528ede447012893</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMEZ_wNWA69bqx_RjKcEXBFz42Dad6Zo4ITM9dk9E_95JIrjLoigozr0Fh5BLBtcMQN9kAKaBArMUpJCMqiMyYVIIKoCVx2QCXBkqtDKn5Czn1YgrpsyEvL9g29C86TF9NRlD0caA66ZbFr4LRRXbHrvshyZ2RR1TMXzgdlLr1wWmNF5iXfQJqybvEBwb_Dfmc3JS-3XGi789JW_3d6-zRzp_fnia3c5pJaQeKAaxWOhgFAMtgUMtghShth4VoMWFqdCUVWlAWGu8lF6W3GBAKTUwbqyYkqt9b5_i5wbz4FZxk7rxpePSgpFa2_IgxQ0XIJnZUnxPVSnmnLB2fWpan34cA7e17PaW3WjZ7Sw7NYbEPpRHuFti-q8-kPoFq_Z-wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282304185</pqid></control><display><type>article</type><title>Semi-supervised modeling and compensation for the thermal error of precision feed axes</title><source>Springer Online Journals Complete</source><creator>Lei, Mohan ; Yang, Jun ; Wang, Shuai ; Zhao, Liang ; Xia, Ping ; Jiang, Gedong ; Mei, Xuesong</creator><creatorcontrib>Lei, Mohan ; Yang, Jun ; Wang, Shuai ; Zhao, Liang ; Xia, Ping ; Jiang, Gedong ; Mei, Xuesong</creatorcontrib><description>The data-driven modeling of thermal error-temperature relationship is key to achieve ideal compensation effect for precision machine tools. The improvements of the modeling quality are limited only depending on ameliorating the regression algorithm with same training data, and more information must be introduced for further improvements. The thermal error data, in particular for the feed axes, are usually high-cost and scarce, but the temperature data are usually readily available. Here, it is indicated that an extra information, the low-cost unlabeled temperature data which are easily accessible under various operation conditions, can be exploited to enrich the thermal error modeling data for the feed axes. Then the co-training semi-supervised support vector machines for regression (COSVR), which can include the pattern information of the unlabeled data in modeling, is employed to establish the thermal error-temperature model for feed axes. Thermal experiments were conducted on two cases of different axes, and the labeled data of temperature and thermal error and the unlabeled data of only temperature were obtained under different operating speeds. The linear thermal errors were modeled by COSVR using all the data, and by the genetic algorithm SVR (GA-SVR) using only the labeled data, respectively. Comparisons showed that the COSVR model outperformed the GA-SVR model by 11.45% and 34.14% in RMSE on the two axes, respectively, and by 53.03% of maximum thermal error reduction in the compensation.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04341-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Axes (reference lines) ; CAE) and Design ; Compensation ; Computer-Aided Engineering (CAD ; Engineering ; Error compensation ; Error reduction ; Genetic algorithms ; Industrial and Production Engineering ; Machine tool industry ; Machine tools ; Mechanical Engineering ; Media Management ; Modelling ; Original Article ; Support vector machines ; Training</subject><ispartof>International journal of advanced manufacturing technology, 2019-10, Vol.104 (9-12), p.4629-4640</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ed3bb7d861074020f3d43df9ae60e9eb8ce85c5803998a44a4528ede447012893</citedby><cites>FETCH-LOGICAL-c347t-ed3bb7d861074020f3d43df9ae60e9eb8ce85c5803998a44a4528ede447012893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04341-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04341-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Lei, Mohan</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Xia, Ping</creatorcontrib><creatorcontrib>Jiang, Gedong</creatorcontrib><creatorcontrib>Mei, Xuesong</creatorcontrib><title>Semi-supervised modeling and compensation for the thermal error of precision feed axes</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The data-driven modeling of thermal error-temperature relationship is key to achieve ideal compensation effect for precision machine tools. The improvements of the modeling quality are limited only depending on ameliorating the regression algorithm with same training data, and more information must be introduced for further improvements. The thermal error data, in particular for the feed axes, are usually high-cost and scarce, but the temperature data are usually readily available. Here, it is indicated that an extra information, the low-cost unlabeled temperature data which are easily accessible under various operation conditions, can be exploited to enrich the thermal error modeling data for the feed axes. Then the co-training semi-supervised support vector machines for regression (COSVR), which can include the pattern information of the unlabeled data in modeling, is employed to establish the thermal error-temperature model for feed axes. Thermal experiments were conducted on two cases of different axes, and the labeled data of temperature and thermal error and the unlabeled data of only temperature were obtained under different operating speeds. The linear thermal errors were modeled by COSVR using all the data, and by the genetic algorithm SVR (GA-SVR) using only the labeled data, respectively. Comparisons showed that the COSVR model outperformed the GA-SVR model by 11.45% and 34.14% in RMSE on the two axes, respectively, and by 53.03% of maximum thermal error reduction in the compensation.</description><subject>Axes (reference lines)</subject><subject>CAE) and Design</subject><subject>Compensation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Error compensation</subject><subject>Error reduction</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Machine tool industry</subject><subject>Machine tools</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Support vector machines</subject><subject>Training</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKA0EQRRtRMEZ_wNWA69bqx_RjKcEXBFz42Dad6Zo4ITM9dk9E_95JIrjLoigozr0Fh5BLBtcMQN9kAKaBArMUpJCMqiMyYVIIKoCVx2QCXBkqtDKn5Czn1YgrpsyEvL9g29C86TF9NRlD0caA66ZbFr4LRRXbHrvshyZ2RR1TMXzgdlLr1wWmNF5iXfQJqybvEBwb_Dfmc3JS-3XGi789JW_3d6-zRzp_fnia3c5pJaQeKAaxWOhgFAMtgUMtghShth4VoMWFqdCUVWlAWGu8lF6W3GBAKTUwbqyYkqt9b5_i5wbz4FZxk7rxpePSgpFa2_IgxQ0XIJnZUnxPVSnmnLB2fWpan34cA7e17PaW3WjZ7Sw7NYbEPpRHuFti-q8-kPoFq_Z-wA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lei, Mohan</creator><creator>Yang, Jun</creator><creator>Wang, Shuai</creator><creator>Zhao, Liang</creator><creator>Xia, Ping</creator><creator>Jiang, Gedong</creator><creator>Mei, Xuesong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Semi-supervised modeling and compensation for the thermal error of precision feed axes</title><author>Lei, Mohan ; Yang, Jun ; Wang, Shuai ; Zhao, Liang ; Xia, Ping ; Jiang, Gedong ; Mei, Xuesong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ed3bb7d861074020f3d43df9ae60e9eb8ce85c5803998a44a4528ede447012893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axes (reference lines)</topic><topic>CAE) and Design</topic><topic>Compensation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Error compensation</topic><topic>Error reduction</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Machine tool industry</topic><topic>Machine tools</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Mohan</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Xia, Ping</creatorcontrib><creatorcontrib>Jiang, Gedong</creatorcontrib><creatorcontrib>Mei, Xuesong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Mohan</au><au>Yang, Jun</au><au>Wang, Shuai</au><au>Zhao, Liang</au><au>Xia, Ping</au><au>Jiang, Gedong</au><au>Mei, Xuesong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised modeling and compensation for the thermal error of precision feed axes</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>104</volume><issue>9-12</issue><spage>4629</spage><epage>4640</epage><pages>4629-4640</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The data-driven modeling of thermal error-temperature relationship is key to achieve ideal compensation effect for precision machine tools. The improvements of the modeling quality are limited only depending on ameliorating the regression algorithm with same training data, and more information must be introduced for further improvements. The thermal error data, in particular for the feed axes, are usually high-cost and scarce, but the temperature data are usually readily available. Here, it is indicated that an extra information, the low-cost unlabeled temperature data which are easily accessible under various operation conditions, can be exploited to enrich the thermal error modeling data for the feed axes. Then the co-training semi-supervised support vector machines for regression (COSVR), which can include the pattern information of the unlabeled data in modeling, is employed to establish the thermal error-temperature model for feed axes. Thermal experiments were conducted on two cases of different axes, and the labeled data of temperature and thermal error and the unlabeled data of only temperature were obtained under different operating speeds. The linear thermal errors were modeled by COSVR using all the data, and by the genetic algorithm SVR (GA-SVR) using only the labeled data, respectively. Comparisons showed that the COSVR model outperformed the GA-SVR model by 11.45% and 34.14% in RMSE on the two axes, respectively, and by 53.03% of maximum thermal error reduction in the compensation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04341-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-10, Vol.104 (9-12), p.4629-4640
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490847795
source Springer Online Journals Complete
subjects Axes (reference lines)
CAE) and Design
Compensation
Computer-Aided Engineering (CAD
Engineering
Error compensation
Error reduction
Genetic algorithms
Industrial and Production Engineering
Machine tool industry
Machine tools
Mechanical Engineering
Media Management
Modelling
Original Article
Support vector machines
Training
title Semi-supervised modeling and compensation for the thermal error of precision feed axes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20modeling%20and%20compensation%20for%20the%20thermal%20error%20of%20precision%20feed%20axes&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Lei,%20Mohan&rft.date=2019-10-01&rft.volume=104&rft.issue=9-12&rft.spage=4629&rft.epage=4640&rft.pages=4629-4640&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04341-6&rft_dat=%3Cproquest_cross%3E2282304185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282304185&rft_id=info:pmid/&rfr_iscdi=true