Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary

The micro channel cold plate is very suitable for the application environment of high heat consumption liquid cooling such as PCB plate and multi-layer components. However, at mesoscale, the titanium alloy micro channel cold plate is micro thin-walled structure of cantilever boundary with weak stiff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-02, Vol.106 (7-8), p.2875-2892
Hauptverfasser: Yi, Jie, Xiang, Junfeng, Yi, Fengyan, Zhao, Yanhua, Wang, Xibin, Jiao, Li, Kang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2892
container_issue 7-8
container_start_page 2875
container_title International journal of advanced manufacturing technology
container_volume 106
creator Yi, Jie
Xiang, Junfeng
Yi, Fengyan
Zhao, Yanhua
Wang, Xibin
Jiao, Li
Kang, Qiang
description The micro channel cold plate is very suitable for the application environment of high heat consumption liquid cooling such as PCB plate and multi-layer components. However, at mesoscale, the titanium alloy micro channel cold plate is micro thin-walled structure of cantilever boundary with weak stiffness, which leads to significant deformation and resultant poor machining accuracy during micro milling. To effectively control and reduce micro thin-walled deformation, a 3D FE cantilever model is established to predict dynamic milling deformation of micro thin wall. The constitutive model of titanium alloy (Ti-6Al-4 V) that includes the strain gradient to consider size effect in micro milling, the edge geometry of milling cutter, the thin-walled microstructure, and micro milling parameters is involved in milling modeling of thin wall. Moreover, a series of micro milling experiments for micro thin wall of titanium alloy at different machining parameters were carried out to investigate the law and mechanism of thin wall deformation in milling micro thin wall subjected to dynamic alternating forces. By comparing numerical and experimental deformation of micro thin wall in micro milling, the accuracy and validity of the prediction model based on cantilever boundary are verified, which provides theoretical support and model basis for the deformation control in milling micro channel cold plate at mesoscale.
doi_str_mv 10.1007/s00170-019-04848-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490846173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490846173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-320b34b7811f1a7e0f6ca8512017d08558f90e9160fc9c81ad8dd6556999720f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9GZpk2Toyx-wYIe9OQhpE2yduk2a9JV9t8bt4I3TwMzzzsz70vIBcIVAtTXCQBrYICKQSlLyXYHZIYl54wDVodkBoWQjNdCHpOTlFYZFyjkjLw9R2e7duzCQIOna5dCak3vqHU-xLXZD7qBrru-74Zlrm0MdHzPrS_T97QxyVmamdYMY9e7TxdpE7aDNXF3Ro686ZM7_62n5PXu9mX-wBZP94_zmwVrOaqR8QIaXja1RPRoagdetEZWWGRLFmRVSa_AKRTgW9VKNFZaK6pKKKXqAjw_JZfT3k0MH1uXRr0K2zjkk7ooFchSYM0zVUxUNpBSdF5vYrfOb2oE_ROinkLUOUS9D1HvsohPopThYeni3-p_VN81FXVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490846173</pqid></control><display><type>article</type><title>Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary</title><source>Springer Journals</source><creator>Yi, Jie ; Xiang, Junfeng ; Yi, Fengyan ; Zhao, Yanhua ; Wang, Xibin ; Jiao, Li ; Kang, Qiang</creator><creatorcontrib>Yi, Jie ; Xiang, Junfeng ; Yi, Fengyan ; Zhao, Yanhua ; Wang, Xibin ; Jiao, Li ; Kang, Qiang</creatorcontrib><description>The micro channel cold plate is very suitable for the application environment of high heat consumption liquid cooling such as PCB plate and multi-layer components. However, at mesoscale, the titanium alloy micro channel cold plate is micro thin-walled structure of cantilever boundary with weak stiffness, which leads to significant deformation and resultant poor machining accuracy during micro milling. To effectively control and reduce micro thin-walled deformation, a 3D FE cantilever model is established to predict dynamic milling deformation of micro thin wall. The constitutive model of titanium alloy (Ti-6Al-4 V) that includes the strain gradient to consider size effect in micro milling, the edge geometry of milling cutter, the thin-walled microstructure, and micro milling parameters is involved in milling modeling of thin wall. Moreover, a series of micro milling experiments for micro thin wall of titanium alloy at different machining parameters were carried out to investigate the law and mechanism of thin wall deformation in milling micro thin wall subjected to dynamic alternating forces. By comparing numerical and experimental deformation of micro thin wall in micro milling, the accuracy and validity of the prediction model based on cantilever boundary are verified, which provides theoretical support and model basis for the deformation control in milling micro channel cold plate at mesoscale.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04848-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Cantilever plates ; Computer-Aided Engineering (CAD ; Constitutive models ; Deformation effects ; Engineering ; Industrial and Production Engineering ; Liquid cooling ; Mathematical models ; Mechanical Engineering ; Media Management ; Mesoscale phenomena ; Milling (machining) ; Model accuracy ; Multilayers ; Original Article ; Parameters ; Prediction models ; Size effects ; Stiffness ; Thin wall structures ; Three dimensional models ; Titanium alloys ; Titanium base alloys</subject><ispartof>International journal of advanced manufacturing technology, 2020-02, Vol.106 (7-8), p.2875-2892</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-320b34b7811f1a7e0f6ca8512017d08558f90e9160fc9c81ad8dd6556999720f3</citedby><cites>FETCH-LOGICAL-c319t-320b34b7811f1a7e0f6ca8512017d08558f90e9160fc9c81ad8dd6556999720f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04848-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04848-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yi, Jie</creatorcontrib><creatorcontrib>Xiang, Junfeng</creatorcontrib><creatorcontrib>Yi, Fengyan</creatorcontrib><creatorcontrib>Zhao, Yanhua</creatorcontrib><creatorcontrib>Wang, Xibin</creatorcontrib><creatorcontrib>Jiao, Li</creatorcontrib><creatorcontrib>Kang, Qiang</creatorcontrib><title>Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The micro channel cold plate is very suitable for the application environment of high heat consumption liquid cooling such as PCB plate and multi-layer components. However, at mesoscale, the titanium alloy micro channel cold plate is micro thin-walled structure of cantilever boundary with weak stiffness, which leads to significant deformation and resultant poor machining accuracy during micro milling. To effectively control and reduce micro thin-walled deformation, a 3D FE cantilever model is established to predict dynamic milling deformation of micro thin wall. The constitutive model of titanium alloy (Ti-6Al-4 V) that includes the strain gradient to consider size effect in micro milling, the edge geometry of milling cutter, the thin-walled microstructure, and micro milling parameters is involved in milling modeling of thin wall. Moreover, a series of micro milling experiments for micro thin wall of titanium alloy at different machining parameters were carried out to investigate the law and mechanism of thin wall deformation in milling micro thin wall subjected to dynamic alternating forces. By comparing numerical and experimental deformation of micro thin wall in micro milling, the accuracy and validity of the prediction model based on cantilever boundary are verified, which provides theoretical support and model basis for the deformation control in milling micro channel cold plate at mesoscale.</description><subject>CAE) and Design</subject><subject>Cantilever plates</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Constitutive models</subject><subject>Deformation effects</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Liquid cooling</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Mesoscale phenomena</subject><subject>Milling (machining)</subject><subject>Model accuracy</subject><subject>Multilayers</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Size effects</subject><subject>Stiffness</subject><subject>Thin wall structures</subject><subject>Three dimensional models</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9GZpk2Toyx-wYIe9OQhpE2yduk2a9JV9t8bt4I3TwMzzzsz70vIBcIVAtTXCQBrYICKQSlLyXYHZIYl54wDVodkBoWQjNdCHpOTlFYZFyjkjLw9R2e7duzCQIOna5dCak3vqHU-xLXZD7qBrru-74Zlrm0MdHzPrS_T97QxyVmamdYMY9e7TxdpE7aDNXF3Ro686ZM7_62n5PXu9mX-wBZP94_zmwVrOaqR8QIaXja1RPRoagdetEZWWGRLFmRVSa_AKRTgW9VKNFZaK6pKKKXqAjw_JZfT3k0MH1uXRr0K2zjkk7ooFchSYM0zVUxUNpBSdF5vYrfOb2oE_ROinkLUOUS9D1HvsohPopThYeni3-p_VN81FXVS</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Yi, Jie</creator><creator>Xiang, Junfeng</creator><creator>Yi, Fengyan</creator><creator>Zhao, Yanhua</creator><creator>Wang, Xibin</creator><creator>Jiao, Li</creator><creator>Kang, Qiang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200201</creationdate><title>Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary</title><author>Yi, Jie ; Xiang, Junfeng ; Yi, Fengyan ; Zhao, Yanhua ; Wang, Xibin ; Jiao, Li ; Kang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-320b34b7811f1a7e0f6ca8512017d08558f90e9160fc9c81ad8dd6556999720f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAE) and Design</topic><topic>Cantilever plates</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Constitutive models</topic><topic>Deformation effects</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Liquid cooling</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Mesoscale phenomena</topic><topic>Milling (machining)</topic><topic>Model accuracy</topic><topic>Multilayers</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Size effects</topic><topic>Stiffness</topic><topic>Thin wall structures</topic><topic>Three dimensional models</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jie</creatorcontrib><creatorcontrib>Xiang, Junfeng</creatorcontrib><creatorcontrib>Yi, Fengyan</creatorcontrib><creatorcontrib>Zhao, Yanhua</creatorcontrib><creatorcontrib>Wang, Xibin</creatorcontrib><creatorcontrib>Jiao, Li</creatorcontrib><creatorcontrib>Kang, Qiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jie</au><au>Xiang, Junfeng</au><au>Yi, Fengyan</au><au>Zhao, Yanhua</au><au>Wang, Xibin</au><au>Jiao, Li</au><au>Kang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>106</volume><issue>7-8</issue><spage>2875</spage><epage>2892</epage><pages>2875-2892</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The micro channel cold plate is very suitable for the application environment of high heat consumption liquid cooling such as PCB plate and multi-layer components. However, at mesoscale, the titanium alloy micro channel cold plate is micro thin-walled structure of cantilever boundary with weak stiffness, which leads to significant deformation and resultant poor machining accuracy during micro milling. To effectively control and reduce micro thin-walled deformation, a 3D FE cantilever model is established to predict dynamic milling deformation of micro thin wall. The constitutive model of titanium alloy (Ti-6Al-4 V) that includes the strain gradient to consider size effect in micro milling, the edge geometry of milling cutter, the thin-walled microstructure, and micro milling parameters is involved in milling modeling of thin wall. Moreover, a series of micro milling experiments for micro thin wall of titanium alloy at different machining parameters were carried out to investigate the law and mechanism of thin wall deformation in milling micro thin wall subjected to dynamic alternating forces. By comparing numerical and experimental deformation of micro thin wall in micro milling, the accuracy and validity of the prediction model based on cantilever boundary are verified, which provides theoretical support and model basis for the deformation control in milling micro channel cold plate at mesoscale.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04848-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-02, Vol.106 (7-8), p.2875-2892
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490846173
source Springer Journals
subjects CAE) and Design
Cantilever plates
Computer-Aided Engineering (CAD
Constitutive models
Deformation effects
Engineering
Industrial and Production Engineering
Liquid cooling
Mathematical models
Mechanical Engineering
Media Management
Mesoscale phenomena
Milling (machining)
Model accuracy
Multilayers
Original Article
Parameters
Prediction models
Size effects
Stiffness
Thin wall structures
Three dimensional models
Titanium alloys
Titanium base alloys
title Prediction of mesoscale deformation in milling micro thin wall based on cantilever boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20mesoscale%20deformation%20in%20milling%20micro%20thin%20wall%20based%20on%20cantilever%20boundary&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Yi,%20Jie&rft.date=2020-02-01&rft.volume=106&rft.issue=7-8&rft.spage=2875&rft.epage=2892&rft.pages=2875-2892&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04848-y&rft_dat=%3Cproquest_cross%3E2490846173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490846173&rft_id=info:pmid/&rfr_iscdi=true