A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes

Swarm intelligence has been extensively adopted to develop and deploy optimization algorithms to almost all branches of science and engineering. In this paper, a visual contrast–based fruit fly algorithm ( c-mFOA ) is presented to push further the improvement of intelligent optimization when it come...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-08, Vol.109 (9-12), p.2901-2914
Hauptverfasser: Fountas, Nikolaos A., Kanarachos, Stratis, Stergiou, Constantinos I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2914
container_issue 9-12
container_start_page 2901
container_title International journal of advanced manufacturing technology
container_volume 109
creator Fountas, Nikolaos A.
Kanarachos, Stratis
Stergiou, Constantinos I.
description Swarm intelligence has been extensively adopted to develop and deploy optimization algorithms to almost all branches of science and engineering. In this paper, a visual contrast–based fruit fly algorithm ( c-mFOA ) is presented to push further the improvement of intelligent optimization when it comes to general engineering problem solving with emphasis to conventional and nonconventional manufacturing processes implemented to modern industry. In this fruit fly algorithmic variant, the natural mechanisms of surging, visual contrast, and casting are incorporated to enhance the algorithm’s exploration and exploitation. The proposed algorithm has been tested to optimize a set of known, widely used benchmark functions and is further implemented to optimize the process parameters of machining processes namely turning; focused ion beam micro milling; laser cutting; wire electrodischarge machining; and microwire electrodischarge machining. The results obtained by examining the multiple solutions, their nonparametric statistical outputs, and hypervolumes of their related Pareto fronts, suggest clear superiority of the c-mFOA against its competing multiobjective optimization algorithms (MOEAs).
doi_str_mv 10.1007/s00170-020-05841-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490842235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490842235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f2855b5561b457e08d859f2c24169b18ad25f7a0aa17132c24fe90b400318b953</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ETvOslQUkMpjAWwtJ3FaV6nd2g5SWfEP_CFfQkKQYMViNNLo3KvRAeAUo3OMUHYREMIZShDphokUJ3wPjHBKaUIRZvtghAgXCc24OARHIaw6nGMuRmA7gS8mtKqBU2ejVyF-vn9cqqArOPOtiXDW7OCkWThv4nINa-fhwyaatXkzdtFnXrWNxtmuQNkK3jtb_r3dqXJpbI8-elfqEHQ4Bge1aoI--dlj8Dy7epreJPOH69vpZJ6UlGcxqYlgrGCM4yJlmUaiEiyvSUlSzPMCC1URVmcKKYUzTPt7rXNUpAhRLIqc0TE4G3o33m1bHaJcudZ3TwVJ0hyJlBDaU2SgSu9C8LqWG2_Wyu8kRrJXKwe1slMrv9VK3oXoEAodbBfa_1b_k_oC2RF9PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490842235</pqid></control><display><type>article</type><title>A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fountas, Nikolaos A. ; Kanarachos, Stratis ; Stergiou, Constantinos I.</creator><creatorcontrib>Fountas, Nikolaos A. ; Kanarachos, Stratis ; Stergiou, Constantinos I.</creatorcontrib><description>Swarm intelligence has been extensively adopted to develop and deploy optimization algorithms to almost all branches of science and engineering. In this paper, a visual contrast–based fruit fly algorithm ( c-mFOA ) is presented to push further the improvement of intelligent optimization when it comes to general engineering problem solving with emphasis to conventional and nonconventional manufacturing processes implemented to modern industry. In this fruit fly algorithmic variant, the natural mechanisms of surging, visual contrast, and casting are incorporated to enhance the algorithm’s exploration and exploitation. The proposed algorithm has been tested to optimize a set of known, widely used benchmark functions and is further implemented to optimize the process parameters of machining processes namely turning; focused ion beam micro milling; laser cutting; wire electrodischarge machining; and microwire electrodischarge machining. The results obtained by examining the multiple solutions, their nonparametric statistical outputs, and hypervolumes of their related Pareto fronts, suggest clear superiority of the c-mFOA against its competing multiobjective optimization algorithms (MOEAs).</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05841-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Computer-Aided Engineering (CAD ; Electric discharge machining ; Engineering ; Fruit flies ; Industrial and Production Engineering ; Ion beams ; Laser beam cutting ; Mechanical Engineering ; Media Management ; Milling (machining) ; Multiple objective analysis ; Optimization algorithms ; Original Article ; Pareto optimization ; Process parameters ; Swarm intelligence ; Turning (machining) ; Visual flight</subject><ispartof>International journal of advanced manufacturing technology, 2020-08, Vol.109 (9-12), p.2901-2914</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f2855b5561b457e08d859f2c24169b18ad25f7a0aa17132c24fe90b400318b953</citedby><cites>FETCH-LOGICAL-c367t-f2855b5561b457e08d859f2c24169b18ad25f7a0aa17132c24fe90b400318b953</cites><orcidid>0000-0001-5859-6503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05841-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05841-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fountas, Nikolaos A.</creatorcontrib><creatorcontrib>Kanarachos, Stratis</creatorcontrib><creatorcontrib>Stergiou, Constantinos I.</creatorcontrib><title>A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Swarm intelligence has been extensively adopted to develop and deploy optimization algorithms to almost all branches of science and engineering. In this paper, a visual contrast–based fruit fly algorithm ( c-mFOA ) is presented to push further the improvement of intelligent optimization when it comes to general engineering problem solving with emphasis to conventional and nonconventional manufacturing processes implemented to modern industry. In this fruit fly algorithmic variant, the natural mechanisms of surging, visual contrast, and casting are incorporated to enhance the algorithm’s exploration and exploitation. The proposed algorithm has been tested to optimize a set of known, widely used benchmark functions and is further implemented to optimize the process parameters of machining processes namely turning; focused ion beam micro milling; laser cutting; wire electrodischarge machining; and microwire electrodischarge machining. The results obtained by examining the multiple solutions, their nonparametric statistical outputs, and hypervolumes of their related Pareto fronts, suggest clear superiority of the c-mFOA against its competing multiobjective optimization algorithms (MOEAs).</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Electric discharge machining</subject><subject>Engineering</subject><subject>Fruit flies</subject><subject>Industrial and Production Engineering</subject><subject>Ion beams</subject><subject>Laser beam cutting</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Multiple objective analysis</subject><subject>Optimization algorithms</subject><subject>Original Article</subject><subject>Pareto optimization</subject><subject>Process parameters</subject><subject>Swarm intelligence</subject><subject>Turning (machining)</subject><subject>Visual flight</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74ETvOslQUkMpjAWwtJ3FaV6nd2g5SWfEP_CFfQkKQYMViNNLo3KvRAeAUo3OMUHYREMIZShDphokUJ3wPjHBKaUIRZvtghAgXCc24OARHIaw6nGMuRmA7gS8mtKqBU2ejVyF-vn9cqqArOPOtiXDW7OCkWThv4nINa-fhwyaatXkzdtFnXrWNxtmuQNkK3jtb_r3dqXJpbI8-elfqEHQ4Bge1aoI--dlj8Dy7epreJPOH69vpZJ6UlGcxqYlgrGCM4yJlmUaiEiyvSUlSzPMCC1URVmcKKYUzTPt7rXNUpAhRLIqc0TE4G3o33m1bHaJcudZ3TwVJ0hyJlBDaU2SgSu9C8LqWG2_Wyu8kRrJXKwe1slMrv9VK3oXoEAodbBfa_1b_k_oC2RF9PA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Fountas, Nikolaos A.</creator><creator>Kanarachos, Stratis</creator><creator>Stergiou, Constantinos I.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5859-6503</orcidid></search><sort><creationdate>20200801</creationdate><title>A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes</title><author>Fountas, Nikolaos A. ; Kanarachos, Stratis ; Stergiou, Constantinos I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f2855b5561b457e08d859f2c24169b18ad25f7a0aa17132c24fe90b400318b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Electric discharge machining</topic><topic>Engineering</topic><topic>Fruit flies</topic><topic>Industrial and Production Engineering</topic><topic>Ion beams</topic><topic>Laser beam cutting</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Multiple objective analysis</topic><topic>Optimization algorithms</topic><topic>Original Article</topic><topic>Pareto optimization</topic><topic>Process parameters</topic><topic>Swarm intelligence</topic><topic>Turning (machining)</topic><topic>Visual flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountas, Nikolaos A.</creatorcontrib><creatorcontrib>Kanarachos, Stratis</creatorcontrib><creatorcontrib>Stergiou, Constantinos I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountas, Nikolaos A.</au><au>Kanarachos, Stratis</au><au>Stergiou, Constantinos I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>109</volume><issue>9-12</issue><spage>2901</spage><epage>2914</epage><pages>2901-2914</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Swarm intelligence has been extensively adopted to develop and deploy optimization algorithms to almost all branches of science and engineering. In this paper, a visual contrast–based fruit fly algorithm ( c-mFOA ) is presented to push further the improvement of intelligent optimization when it comes to general engineering problem solving with emphasis to conventional and nonconventional manufacturing processes implemented to modern industry. In this fruit fly algorithmic variant, the natural mechanisms of surging, visual contrast, and casting are incorporated to enhance the algorithm’s exploration and exploitation. The proposed algorithm has been tested to optimize a set of known, widely used benchmark functions and is further implemented to optimize the process parameters of machining processes namely turning; focused ion beam micro milling; laser cutting; wire electrodischarge machining; and microwire electrodischarge machining. The results obtained by examining the multiple solutions, their nonparametric statistical outputs, and hypervolumes of their related Pareto fronts, suggest clear superiority of the c-mFOA against its competing multiobjective optimization algorithms (MOEAs).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05841-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5859-6503</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-08, Vol.109 (9-12), p.2901-2914
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490842235
source SpringerLink Journals - AutoHoldings
subjects Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Electric discharge machining
Engineering
Fruit flies
Industrial and Production Engineering
Ion beams
Laser beam cutting
Mechanical Engineering
Media Management
Milling (machining)
Multiple objective analysis
Optimization algorithms
Original Article
Pareto optimization
Process parameters
Swarm intelligence
Turning (machining)
Visual flight
title A Visual Contrast–Based Fruit Fly Algorithm for Optimizing Conventional and Nonconventional Machining Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Visual%20Contrast%E2%80%93Based%20Fruit%20Fly%20Algorithm%20for%20Optimizing%20Conventional%20and%20Nonconventional%20Machining%20Processes&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Fountas,%20Nikolaos%20A.&rft.date=2020-08-01&rft.volume=109&rft.issue=9-12&rft.spage=2901&rft.epage=2914&rft.pages=2901-2914&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05841-6&rft_dat=%3Cproquest_cross%3E2490842235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490842235&rft_id=info:pmid/&rfr_iscdi=true