Analytical modeling of the heat-affected zone in laser-assisted milling of AerMet100 steel

Compared with conventional milling, laser-assisted milling (LAM) enhances the productivity of difficult-to-cut materials and is a green process due to the elimination of coolant. However, this heat-assisted process may induce a detrimental heat-affected zone (HAZ, generally referred to as phase tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-08, Vol.109 (9-12), p.2481-2490
Hauptverfasser: Zeng, Haohao, Yan, Rong, Wang, Wei, Zhang, Hang, Yan, Jingnan, Peng, Fangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2490
container_issue 9-12
container_start_page 2481
container_title International journal of advanced manufacturing technology
container_volume 109
creator Zeng, Haohao
Yan, Rong
Wang, Wei
Zhang, Hang
Yan, Jingnan
Peng, Fangyu
description Compared with conventional milling, laser-assisted milling (LAM) enhances the productivity of difficult-to-cut materials and is a green process due to the elimination of coolant. However, this heat-assisted process may induce a detrimental heat-affected zone (HAZ, generally referred to as phase transformation zone) in the workpiece. This paper presents an analytical model to predict the HAZ produced by laser heating in LAM of AerMet100 steel, in which the size of HAZ is determined by comparing the steady temperature field with the phase transformation temperature of workpiece material. A series of laser heating and LAM experiments are performed to validate the HAZ model. XRD technique is employed to analyze the microstructures in the heated and machined surface layers. Phase compositions and retained austenite content of each specimen are compared with those of the base material. The results indicate that the proposed model is feasible. In addition, the effects of different laser parameters on the HAZ are discussed. The size of the HAZ increases significantly with increasing laser power and decreases significantly with increasing feed speed. The HAZ width increases with the increase of laser spot size, and it appears the opposite change for the HAZ depth. This work can be applied to determine the process parameters in LAM that will yield no residual HAZ in the workpiece after machining.
doi_str_mv 10.1007/s00170-020-05821-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490841274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490841274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fee650933e17305f37dd43ba2f845715afda932b24e2e077c7dd2703806fb403</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3TyZze7x1LUChUvPXkJ6e6k3ZLu1mRLqZ_e1FW8eRgG5r3fMPMIueVwzwH0QwTgGhiIVFkhODuckRFXUjIJPDsnIxB5waTOi0tyFeMm2XOeFyPyPmmtP_ZNZT3ddjX6pl3RztF-jXSNtmfWOax6rOln1yJtWuptxMBsjE08jbeN_2UmGF6xT_fQpKC_JhfO-og3P31MFk-Pi-mMzd-eX6aTOaskL3vmEPMMSimRawmZk7qulVxa4QqVaZ5ZV9tSiqVQKBC0rpIuNMgCcrdUIMfkbli7C93HHmNvNt0-pK-iEaqEQnGhVXKJwVWFLsaAzuxCs7XhaDiYU4RmiNCkCM13hOaQIDlAMZnbFYa_1f9QXw5tc6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490841274</pqid></control><display><type>article</type><title>Analytical modeling of the heat-affected zone in laser-assisted milling of AerMet100 steel</title><source>Springer Nature - Complete Springer Journals</source><creator>Zeng, Haohao ; Yan, Rong ; Wang, Wei ; Zhang, Hang ; Yan, Jingnan ; Peng, Fangyu</creator><creatorcontrib>Zeng, Haohao ; Yan, Rong ; Wang, Wei ; Zhang, Hang ; Yan, Jingnan ; Peng, Fangyu</creatorcontrib><description>Compared with conventional milling, laser-assisted milling (LAM) enhances the productivity of difficult-to-cut materials and is a green process due to the elimination of coolant. However, this heat-assisted process may induce a detrimental heat-affected zone (HAZ, generally referred to as phase transformation zone) in the workpiece. This paper presents an analytical model to predict the HAZ produced by laser heating in LAM of AerMet100 steel, in which the size of HAZ is determined by comparing the steady temperature field with the phase transformation temperature of workpiece material. A series of laser heating and LAM experiments are performed to validate the HAZ model. XRD technique is employed to analyze the microstructures in the heated and machined surface layers. Phase compositions and retained austenite content of each specimen are compared with those of the base material. The results indicate that the proposed model is feasible. In addition, the effects of different laser parameters on the HAZ are discussed. The size of the HAZ increases significantly with increasing laser power and decreases significantly with increasing feed speed. The HAZ width increases with the increase of laser spot size, and it appears the opposite change for the HAZ depth. This work can be applied to determine the process parameters in LAM that will yield no residual HAZ in the workpiece after machining.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05821-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Heat affected zone ; High strength steels ; Industrial and Production Engineering ; Laser beam heating ; Lasers ; Mathematical models ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Phase transitions ; Process parameters ; Retained austenite ; Surface layers ; Temperature distribution ; Transformation temperature ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2020-08, Vol.109 (9-12), p.2481-2490</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fee650933e17305f37dd43ba2f845715afda932b24e2e077c7dd2703806fb403</citedby><cites>FETCH-LOGICAL-c319t-fee650933e17305f37dd43ba2f845715afda932b24e2e077c7dd2703806fb403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05821-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05821-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zeng, Haohao</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Yan, Jingnan</creatorcontrib><creatorcontrib>Peng, Fangyu</creatorcontrib><title>Analytical modeling of the heat-affected zone in laser-assisted milling of AerMet100 steel</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Compared with conventional milling, laser-assisted milling (LAM) enhances the productivity of difficult-to-cut materials and is a green process due to the elimination of coolant. However, this heat-assisted process may induce a detrimental heat-affected zone (HAZ, generally referred to as phase transformation zone) in the workpiece. This paper presents an analytical model to predict the HAZ produced by laser heating in LAM of AerMet100 steel, in which the size of HAZ is determined by comparing the steady temperature field with the phase transformation temperature of workpiece material. A series of laser heating and LAM experiments are performed to validate the HAZ model. XRD technique is employed to analyze the microstructures in the heated and machined surface layers. Phase compositions and retained austenite content of each specimen are compared with those of the base material. The results indicate that the proposed model is feasible. In addition, the effects of different laser parameters on the HAZ are discussed. The size of the HAZ increases significantly with increasing laser power and decreases significantly with increasing feed speed. The HAZ width increases with the increase of laser spot size, and it appears the opposite change for the HAZ depth. This work can be applied to determine the process parameters in LAM that will yield no residual HAZ in the workpiece after machining.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Heat affected zone</subject><subject>High strength steels</subject><subject>Industrial and Production Engineering</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Phase transitions</subject><subject>Process parameters</subject><subject>Retained austenite</subject><subject>Surface layers</subject><subject>Temperature distribution</subject><subject>Transformation temperature</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3TyZze7x1LUChUvPXkJ6e6k3ZLu1mRLqZ_e1FW8eRgG5r3fMPMIueVwzwH0QwTgGhiIVFkhODuckRFXUjIJPDsnIxB5waTOi0tyFeMm2XOeFyPyPmmtP_ZNZT3ddjX6pl3RztF-jXSNtmfWOax6rOln1yJtWuptxMBsjE08jbeN_2UmGF6xT_fQpKC_JhfO-og3P31MFk-Pi-mMzd-eX6aTOaskL3vmEPMMSimRawmZk7qulVxa4QqVaZ5ZV9tSiqVQKBC0rpIuNMgCcrdUIMfkbli7C93HHmNvNt0-pK-iEaqEQnGhVXKJwVWFLsaAzuxCs7XhaDiYU4RmiNCkCM13hOaQIDlAMZnbFYa_1f9QXw5tc6U</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zeng, Haohao</creator><creator>Yan, Rong</creator><creator>Wang, Wei</creator><creator>Zhang, Hang</creator><creator>Yan, Jingnan</creator><creator>Peng, Fangyu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200801</creationdate><title>Analytical modeling of the heat-affected zone in laser-assisted milling of AerMet100 steel</title><author>Zeng, Haohao ; Yan, Rong ; Wang, Wei ; Zhang, Hang ; Yan, Jingnan ; Peng, Fangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fee650933e17305f37dd43ba2f845715afda932b24e2e077c7dd2703806fb403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Heat affected zone</topic><topic>High strength steels</topic><topic>Industrial and Production Engineering</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Phase transitions</topic><topic>Process parameters</topic><topic>Retained austenite</topic><topic>Surface layers</topic><topic>Temperature distribution</topic><topic>Transformation temperature</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Haohao</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Yan, Jingnan</creatorcontrib><creatorcontrib>Peng, Fangyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Haohao</au><au>Yan, Rong</au><au>Wang, Wei</au><au>Zhang, Hang</au><au>Yan, Jingnan</au><au>Peng, Fangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modeling of the heat-affected zone in laser-assisted milling of AerMet100 steel</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>109</volume><issue>9-12</issue><spage>2481</spage><epage>2490</epage><pages>2481-2490</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Compared with conventional milling, laser-assisted milling (LAM) enhances the productivity of difficult-to-cut materials and is a green process due to the elimination of coolant. However, this heat-assisted process may induce a detrimental heat-affected zone (HAZ, generally referred to as phase transformation zone) in the workpiece. This paper presents an analytical model to predict the HAZ produced by laser heating in LAM of AerMet100 steel, in which the size of HAZ is determined by comparing the steady temperature field with the phase transformation temperature of workpiece material. A series of laser heating and LAM experiments are performed to validate the HAZ model. XRD technique is employed to analyze the microstructures in the heated and machined surface layers. Phase compositions and retained austenite content of each specimen are compared with those of the base material. The results indicate that the proposed model is feasible. In addition, the effects of different laser parameters on the HAZ are discussed. The size of the HAZ increases significantly with increasing laser power and decreases significantly with increasing feed speed. The HAZ width increases with the increase of laser spot size, and it appears the opposite change for the HAZ depth. This work can be applied to determine the process parameters in LAM that will yield no residual HAZ in the workpiece after machining.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05821-w</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-08, Vol.109 (9-12), p.2481-2490
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490841274
source Springer Nature - Complete Springer Journals
subjects CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Heat affected zone
High strength steels
Industrial and Production Engineering
Laser beam heating
Lasers
Mathematical models
Mechanical Engineering
Media Management
Milling (machining)
Original Article
Phase transitions
Process parameters
Retained austenite
Surface layers
Temperature distribution
Transformation temperature
Workpieces
title Analytical modeling of the heat-affected zone in laser-assisted milling of AerMet100 steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modeling%20of%20the%20heat-affected%20zone%20in%20laser-assisted%20milling%20of%20AerMet100%20steel&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zeng,%20Haohao&rft.date=2020-08-01&rft.volume=109&rft.issue=9-12&rft.spage=2481&rft.epage=2490&rft.pages=2481-2490&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05821-w&rft_dat=%3Cproquest_cross%3E2490841274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490841274&rft_id=info:pmid/&rfr_iscdi=true