Mechanical parametric feedback-cooling for pendulum-based gravity experiments

Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Hartwig, Daniel, Petermann, Jan, Schnabel, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hartwig, Daniel
Petermann, Jan
Schnabel, Roman
description Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2490837788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490837788</sourcerecordid><originalsourceid>FETCH-proquest_journals_24908377883</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGxESivEMT5ybYgtTZaFzY3EkpP1gsbe3F6Nvr4AM4neE7C5RRxnaEl5SuUB7CVBQF3de0qliGmgbkTRglhcZOeDFD9EriAaDvhLwTaa1WZsSD9diB6ZNOM-lEgB6PXjxVfGN4OfBqBhPDBi0HoQPkv67R9ny6Hi_EeftIEGI72eTNl1paHgrO6ppz9t_1AQAyPuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490837788</pqid></control><display><type>article</type><title>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</title><source>Free E- Journals</source><creator>Hartwig, Daniel ; Petermann, Jan ; Schnabel, Roman</creator><creatorcontrib>Hartwig, Daniel ; Petermann, Jan ; Schnabel, Roman</creatorcontrib><description>Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cryogenic cooling ; Damping ; Earthquake dampers ; Feedback ; Gravitation ; Gravitational fields ; Gravitational waves ; Linear damping ; Pendulums ; Quantum mechanics ; Seismic isolation ; Thermal energy</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hartwig, Daniel</creatorcontrib><creatorcontrib>Petermann, Jan</creatorcontrib><creatorcontrib>Schnabel, Roman</creatorcontrib><title>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</title><title>arXiv.org</title><description>Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.</description><subject>Cryogenic cooling</subject><subject>Damping</subject><subject>Earthquake dampers</subject><subject>Feedback</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Gravitational waves</subject><subject>Linear damping</subject><subject>Pendulums</subject><subject>Quantum mechanics</subject><subject>Seismic isolation</subject><subject>Thermal energy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsOgjAYQOHGxESivEMT5ybYgtTZaFzY3EkpP1gsbe3F6Nvr4AM4neE7C5RRxnaEl5SuUB7CVBQF3de0qliGmgbkTRglhcZOeDFD9EriAaDvhLwTaa1WZsSD9diB6ZNOM-lEgB6PXjxVfGN4OfBqBhPDBi0HoQPkv67R9ny6Hi_EeftIEGI72eTNl1paHgrO6ppz9t_1AQAyPuM</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Hartwig, Daniel</creator><creator>Petermann, Jan</creator><creator>Schnabel, Roman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210217</creationdate><title>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</title><author>Hartwig, Daniel ; Petermann, Jan ; Schnabel, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24908377883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cryogenic cooling</topic><topic>Damping</topic><topic>Earthquake dampers</topic><topic>Feedback</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Gravitational waves</topic><topic>Linear damping</topic><topic>Pendulums</topic><topic>Quantum mechanics</topic><topic>Seismic isolation</topic><topic>Thermal energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Hartwig, Daniel</creatorcontrib><creatorcontrib>Petermann, Jan</creatorcontrib><creatorcontrib>Schnabel, Roman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartwig, Daniel</au><au>Petermann, Jan</au><au>Schnabel, Roman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</atitle><jtitle>arXiv.org</jtitle><date>2021-02-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2490837788
source Free E- Journals
subjects Cryogenic cooling
Damping
Earthquake dampers
Feedback
Gravitation
Gravitational fields
Gravitational waves
Linear damping
Pendulums
Quantum mechanics
Seismic isolation
Thermal energy
title Mechanical parametric feedback-cooling for pendulum-based gravity experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mechanical%20parametric%20feedback-cooling%20for%20pendulum-based%20gravity%20experiments&rft.jtitle=arXiv.org&rft.au=Hartwig,%20Daniel&rft.date=2021-02-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2490837788%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490837788&rft_id=info:pmid/&rfr_iscdi=true