Mechanical parametric feedback-cooling for pendulum-based gravity experiments
Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hartwig, Daniel Petermann, Jan Schnabel, Roman |
description | Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2490837788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490837788</sourcerecordid><originalsourceid>FETCH-proquest_journals_24908377883</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGxESivEMT5ybYgtTZaFzY3EkpP1gsbe3F6Nvr4AM4neE7C5RRxnaEl5SuUB7CVBQF3de0qliGmgbkTRglhcZOeDFD9EriAaDvhLwTaa1WZsSD9diB6ZNOM-lEgB6PXjxVfGN4OfBqBhPDBi0HoQPkv67R9ny6Hi_EeftIEGI72eTNl1paHgrO6ppz9t_1AQAyPuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490837788</pqid></control><display><type>article</type><title>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</title><source>Free E- Journals</source><creator>Hartwig, Daniel ; Petermann, Jan ; Schnabel, Roman</creator><creatorcontrib>Hartwig, Daniel ; Petermann, Jan ; Schnabel, Roman</creatorcontrib><description>Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cryogenic cooling ; Damping ; Earthquake dampers ; Feedback ; Gravitation ; Gravitational fields ; Gravitational waves ; Linear damping ; Pendulums ; Quantum mechanics ; Seismic isolation ; Thermal energy</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hartwig, Daniel</creatorcontrib><creatorcontrib>Petermann, Jan</creatorcontrib><creatorcontrib>Schnabel, Roman</creatorcontrib><title>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</title><title>arXiv.org</title><description>Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.</description><subject>Cryogenic cooling</subject><subject>Damping</subject><subject>Earthquake dampers</subject><subject>Feedback</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Gravitational waves</subject><subject>Linear damping</subject><subject>Pendulums</subject><subject>Quantum mechanics</subject><subject>Seismic isolation</subject><subject>Thermal energy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsOgjAYQOHGxESivEMT5ybYgtTZaFzY3EkpP1gsbe3F6Nvr4AM4neE7C5RRxnaEl5SuUB7CVBQF3de0qliGmgbkTRglhcZOeDFD9EriAaDvhLwTaa1WZsSD9diB6ZNOM-lEgB6PXjxVfGN4OfBqBhPDBi0HoQPkv67R9ny6Hi_EeftIEGI72eTNl1paHgrO6ppz9t_1AQAyPuM</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Hartwig, Daniel</creator><creator>Petermann, Jan</creator><creator>Schnabel, Roman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210217</creationdate><title>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</title><author>Hartwig, Daniel ; Petermann, Jan ; Schnabel, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24908377883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cryogenic cooling</topic><topic>Damping</topic><topic>Earthquake dampers</topic><topic>Feedback</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Gravitational waves</topic><topic>Linear damping</topic><topic>Pendulums</topic><topic>Quantum mechanics</topic><topic>Seismic isolation</topic><topic>Thermal energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Hartwig, Daniel</creatorcontrib><creatorcontrib>Petermann, Jan</creatorcontrib><creatorcontrib>Schnabel, Roman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartwig, Daniel</au><au>Petermann, Jan</au><au>Schnabel, Roman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mechanical parametric feedback-cooling for pendulum-based gravity experiments</atitle><jtitle>arXiv.org</jtitle><date>2021-02-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation and linear damping, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion during the gravitational field measurement. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. More feasible applications we anticipate in gravitational-wave detectors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2490837788 |
source | Free E- Journals |
subjects | Cryogenic cooling Damping Earthquake dampers Feedback Gravitation Gravitational fields Gravitational waves Linear damping Pendulums Quantum mechanics Seismic isolation Thermal energy |
title | Mechanical parametric feedback-cooling for pendulum-based gravity experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mechanical%20parametric%20feedback-cooling%20for%20pendulum-based%20gravity%20experiments&rft.jtitle=arXiv.org&rft.au=Hartwig,%20Daniel&rft.date=2021-02-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2490837788%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490837788&rft_id=info:pmid/&rfr_iscdi=true |