Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High‐Performance Sodium‐Ion Battery
P‐type layered oxide is a promising cathode candidate for sodium‐ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–a...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-02, Vol.17 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Jiang, Na Liu, Qiunan Wang, Jiawei Yang, Wanfeng Ma, Wensheng Zhang, Liqiang Peng, Zhangquan Zhang, Zhonghua |
description | P‐type layered oxide is a promising cathode candidate for sodium‐ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode delivers an excellent rate capability of 83 mA h g−1 at a high current density of 1700 mA g−1 (10 C), and an outstanding cycling stability over 500 cycles at 1000 mA g−1. This excellent performance is attributed to the unique P2/P3 biphases with stable crystal structures and fast Na+ diffusion between open prismatic Na sites. Moreover, operando X‐ray diffraction is applied to explore the structural evolution of Na0.67Mn0.64Co0.30Al0.06O2 during the Na+ extraction/insertion processes, and the P2–P2′ phase transition is effectively suppressed. Operando Raman technique is utilized to explore the structural superiority of P2/P3 biphase cathode compared with pure P2 or P3 phase. This work highlights precisely tailoring the phase composition as an effective strategy to design advanced cathode materials for SIBs.
Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode exhibits excellent cycling stability and rate capacity due to the biphase synergistic effect. Operando X‐ray diffraction/Raman techniques are employed to unravel the structural evolution of prepared samples upon Na+ extraction/insertion processes. |
doi_str_mv | 10.1002/smll.202007103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2490454378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490454378</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2723-ca6332c1da33d9caed33ed45cbdabaa4ef6e7292e61dde91d6c0fb34e9d420a43</originalsourceid><addsrcrecordid>eNo9kM1OwkAURidGExHdup7EdWH-aOlSiApJERJwPZl2bmFI28GZNtidj-Az-iSWYFjd-305uTc5CD1SMqCEsKEvi2LACCMkooRfoR4NKQ_CMYuvLzslt-jO-z0hnDIR9dB-o0xhnam2eMWGK44n5rBTHjy2OU5UCw40fldfi2rJcNriqcXrJvW1qZva2Arn1uGZ2e5-v39W4LpUqioDvLbaNGVXzjtmouoaXHuPbnJVeHj4n3308fqymc6CZPk2nz4nwZZFjAeZCjlnGdWKcx1nCjTnoMUoS7VKlRKQhxCxmEFItYaY6jAjecoFxFowogTvo6fz3YOznw34Wu5t46rupWQiJmIkeDTuqPhMHU0BrTw4UyrXSkrkSaY8yZQXmXK9SJJL4n8e-G2r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490454378</pqid></control><display><type>article</type><title>Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High‐Performance Sodium‐Ion Battery</title><source>Wiley Online Library All Journals</source><creator>Jiang, Na ; Liu, Qiunan ; Wang, Jiawei ; Yang, Wanfeng ; Ma, Wensheng ; Zhang, Liqiang ; Peng, Zhangquan ; Zhang, Zhonghua</creator><creatorcontrib>Jiang, Na ; Liu, Qiunan ; Wang, Jiawei ; Yang, Wanfeng ; Ma, Wensheng ; Zhang, Liqiang ; Peng, Zhangquan ; Zhang, Zhonghua</creatorcontrib><description>P‐type layered oxide is a promising cathode candidate for sodium‐ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode delivers an excellent rate capability of 83 mA h g−1 at a high current density of 1700 mA g−1 (10 C), and an outstanding cycling stability over 500 cycles at 1000 mA g−1. This excellent performance is attributed to the unique P2/P3 biphases with stable crystal structures and fast Na+ diffusion between open prismatic Na sites. Moreover, operando X‐ray diffraction is applied to explore the structural evolution of Na0.67Mn0.64Co0.30Al0.06O2 during the Na+ extraction/insertion processes, and the P2–P2′ phase transition is effectively suppressed. Operando Raman technique is utilized to explore the structural superiority of P2/P3 biphase cathode compared with pure P2 or P3 phase. This work highlights precisely tailoring the phase composition as an effective strategy to design advanced cathode materials for SIBs.
Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode exhibits excellent cycling stability and rate capacity due to the biphase synergistic effect. Operando X‐ray diffraction/Raman techniques are employed to unravel the structural evolution of prepared samples upon Na+ extraction/insertion processes.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202007103</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>cathode materials ; Cathodes ; Composition effects ; Crystal structure ; dealloying ; Diffusion rate ; Electrode materials ; layered oxides ; Nanotechnology ; operando X‐ray diffraction/Raman ; Phase composition ; Phase transitions ; Rechargeable batteries ; Sodium-ion batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-02, Vol.17 (7), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2883-4459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202007103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202007103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiang, Na</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Yang, Wanfeng</creatorcontrib><creatorcontrib>Ma, Wensheng</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><creatorcontrib>Zhang, Zhonghua</creatorcontrib><title>Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High‐Performance Sodium‐Ion Battery</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>P‐type layered oxide is a promising cathode candidate for sodium‐ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode delivers an excellent rate capability of 83 mA h g−1 at a high current density of 1700 mA g−1 (10 C), and an outstanding cycling stability over 500 cycles at 1000 mA g−1. This excellent performance is attributed to the unique P2/P3 biphases with stable crystal structures and fast Na+ diffusion between open prismatic Na sites. Moreover, operando X‐ray diffraction is applied to explore the structural evolution of Na0.67Mn0.64Co0.30Al0.06O2 during the Na+ extraction/insertion processes, and the P2–P2′ phase transition is effectively suppressed. Operando Raman technique is utilized to explore the structural superiority of P2/P3 biphase cathode compared with pure P2 or P3 phase. This work highlights precisely tailoring the phase composition as an effective strategy to design advanced cathode materials for SIBs.
Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode exhibits excellent cycling stability and rate capacity due to the biphase synergistic effect. Operando X‐ray diffraction/Raman techniques are employed to unravel the structural evolution of prepared samples upon Na+ extraction/insertion processes.</description><subject>cathode materials</subject><subject>Cathodes</subject><subject>Composition effects</subject><subject>Crystal structure</subject><subject>dealloying</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>layered oxides</subject><subject>Nanotechnology</subject><subject>operando X‐ray diffraction/Raman</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAURidGExHdup7EdWH-aOlSiApJERJwPZl2bmFI28GZNtidj-Az-iSWYFjd-305uTc5CD1SMqCEsKEvi2LACCMkooRfoR4NKQ_CMYuvLzslt-jO-z0hnDIR9dB-o0xhnam2eMWGK44n5rBTHjy2OU5UCw40fldfi2rJcNriqcXrJvW1qZva2Arn1uGZ2e5-v39W4LpUqioDvLbaNGVXzjtmouoaXHuPbnJVeHj4n3308fqymc6CZPk2nz4nwZZFjAeZCjlnGdWKcx1nCjTnoMUoS7VKlRKQhxCxmEFItYaY6jAjecoFxFowogTvo6fz3YOznw34Wu5t46rupWQiJmIkeDTuqPhMHU0BrTw4UyrXSkrkSaY8yZQXmXK9SJJL4n8e-G2r</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Jiang, Na</creator><creator>Liu, Qiunan</creator><creator>Wang, Jiawei</creator><creator>Yang, Wanfeng</creator><creator>Ma, Wensheng</creator><creator>Zhang, Liqiang</creator><creator>Peng, Zhangquan</creator><creator>Zhang, Zhonghua</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2883-4459</orcidid></search><sort><creationdate>20210201</creationdate><title>Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High‐Performance Sodium‐Ion Battery</title><author>Jiang, Na ; Liu, Qiunan ; Wang, Jiawei ; Yang, Wanfeng ; Ma, Wensheng ; Zhang, Liqiang ; Peng, Zhangquan ; Zhang, Zhonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2723-ca6332c1da33d9caed33ed45cbdabaa4ef6e7292e61dde91d6c0fb34e9d420a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cathode materials</topic><topic>Cathodes</topic><topic>Composition effects</topic><topic>Crystal structure</topic><topic>dealloying</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>layered oxides</topic><topic>Nanotechnology</topic><topic>operando X‐ray diffraction/Raman</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Na</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Yang, Wanfeng</creatorcontrib><creatorcontrib>Ma, Wensheng</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><creatorcontrib>Zhang, Zhonghua</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Na</au><au>Liu, Qiunan</au><au>Wang, Jiawei</au><au>Yang, Wanfeng</au><au>Ma, Wensheng</au><au>Zhang, Liqiang</au><au>Peng, Zhangquan</au><au>Zhang, Zhonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High‐Performance Sodium‐Ion Battery</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>P‐type layered oxide is a promising cathode candidate for sodium‐ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode delivers an excellent rate capability of 83 mA h g−1 at a high current density of 1700 mA g−1 (10 C), and an outstanding cycling stability over 500 cycles at 1000 mA g−1. This excellent performance is attributed to the unique P2/P3 biphases with stable crystal structures and fast Na+ diffusion between open prismatic Na sites. Moreover, operando X‐ray diffraction is applied to explore the structural evolution of Na0.67Mn0.64Co0.30Al0.06O2 during the Na+ extraction/insertion processes, and the P2–P2′ phase transition is effectively suppressed. Operando Raman technique is utilized to explore the structural superiority of P2/P3 biphase cathode compared with pure P2 or P3 phase. This work highlights precisely tailoring the phase composition as an effective strategy to design advanced cathode materials for SIBs.
Co‐substituted NaxMnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying–annealing strategy. The optimized P2/P3–Na0.67Mn0.64Co0.30Al0.06O2 cathode exhibits excellent cycling stability and rate capacity due to the biphase synergistic effect. Operando X‐ray diffraction/Raman techniques are employed to unravel the structural evolution of prepared samples upon Na+ extraction/insertion processes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202007103</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2883-4459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-02, Vol.17 (7), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2490454378 |
source | Wiley Online Library All Journals |
subjects | cathode materials Cathodes Composition effects Crystal structure dealloying Diffusion rate Electrode materials layered oxides Nanotechnology operando X‐ray diffraction/Raman Phase composition Phase transitions Rechargeable batteries Sodium-ion batteries |
title | Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High‐Performance Sodium‐Ion Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20P2/P3%20Biphases%20of%20Layered%20NaxMnO2%20by%20Co%20Substitution%20for%20High%E2%80%90Performance%20Sodium%E2%80%90Ion%20Battery&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jiang,%20Na&rft.date=2021-02-01&rft.volume=17&rft.issue=7&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202007103&rft_dat=%3Cproquest_wiley%3E2490454378%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490454378&rft_id=info:pmid/&rfr_iscdi=true |