Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm

Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-02, Vol.9 (4), p.n/a
Hauptverfasser: Hallman, Kent A., Miller, Kevin J., Baydin, Andrey, Weiss, Sharon M., Haglund, Richard F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced optical materials
container_volume 9
creator Hallman, Kent A.
Miller, Kevin J.
Baydin, Andrey
Weiss, Sharon M.
Haglund, Richard F.
description Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times. Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.
doi_str_mv 10.1002/adom.202001721
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2490454140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490454140</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2731-dfcc76bbb324be2d3e8799def97ddc031783210665720bc7307d59680f1b44893</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNRuXQ-4Tr3zk0zGXak_FSoVW3U5ZDITmdJkYqZRuvMRfASfxUfxSUypFFf3XPg4Bz6ETgkMCQA9z4wvhxQoABGUHKAeJTKOCAhy-C8fo0EIS-ggEExy0UPTeat_Pj7vXe6DzX1l8IMNta-CxQtXWuwLnOHJRjfO4KcZvZi7VYdW-Dl7sy-tMxZna0ziGL6_qvIEHRXZKtjB3-2jx-urxXgSTWc3t-PRNKqpYCQyRZ6LRGvNKNeWGmZTIaWxhRTG5MCISBklkCSxoKBzwUCYWCYpFERznkrWR2e73rrxr60Na7X0bVN1k4pyCTzmhENHyR317lZ2o-rGlVmzUQTU1pjaGlN7Y2p0Obvbf-wXoeVgTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490454140</pqid></control><display><type>article</type><title>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</title><source>Wiley Online Library All Journals</source><creator>Hallman, Kent A. ; Miller, Kevin J. ; Baydin, Andrey ; Weiss, Sharon M. ; Haglund, Richard F.</creator><creatorcontrib>Hallman, Kent A. ; Miller, Kevin J. ; Baydin, Andrey ; Weiss, Sharon M. ; Haglund, Richard F.</creatorcontrib><description>Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times. Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001721</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>differential transmission ; Femtosecond pulses ; Fluence ; Hybrid systems ; Materials science ; Optics ; phase change ; Phase transitions ; Recovery time ; Refractivity ; Response time ; Silicon ; silicon photonics ; Switching ; Thin films ; Vanadium dioxide ; Vanadium oxides ; Waveguides</subject><ispartof>Advanced optical materials, 2021-02, Vol.9 (4), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2252-3104 ; 0000-0002-2701-1768 ; 0000-0002-2567-3506 ; 0000-0002-6078-8763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hallman, Kent A.</creatorcontrib><creatorcontrib>Miller, Kevin J.</creatorcontrib><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Weiss, Sharon M.</creatorcontrib><creatorcontrib>Haglund, Richard F.</creatorcontrib><title>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</title><title>Advanced optical materials</title><description>Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times. Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.</description><subject>differential transmission</subject><subject>Femtosecond pulses</subject><subject>Fluence</subject><subject>Hybrid systems</subject><subject>Materials science</subject><subject>Optics</subject><subject>phase change</subject><subject>Phase transitions</subject><subject>Recovery time</subject><subject>Refractivity</subject><subject>Response time</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Switching</subject><subject>Thin films</subject><subject>Vanadium dioxide</subject><subject>Vanadium oxides</subject><subject>Waveguides</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AUhQdRsNRuXQ-4Tr3zk0zGXak_FSoVW3U5ZDITmdJkYqZRuvMRfASfxUfxSUypFFf3XPg4Bz6ETgkMCQA9z4wvhxQoABGUHKAeJTKOCAhy-C8fo0EIS-ggEExy0UPTeat_Pj7vXe6DzX1l8IMNta-CxQtXWuwLnOHJRjfO4KcZvZi7VYdW-Dl7sy-tMxZna0ziGL6_qvIEHRXZKtjB3-2jx-urxXgSTWc3t-PRNKqpYCQyRZ6LRGvNKNeWGmZTIaWxhRTG5MCISBklkCSxoKBzwUCYWCYpFERznkrWR2e73rrxr60Na7X0bVN1k4pyCTzmhENHyR317lZ2o-rGlVmzUQTU1pjaGlN7Y2p0Obvbf-wXoeVgTA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hallman, Kent A.</creator><creator>Miller, Kevin J.</creator><creator>Baydin, Andrey</creator><creator>Weiss, Sharon M.</creator><creator>Haglund, Richard F.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2252-3104</orcidid><orcidid>https://orcid.org/0000-0002-2701-1768</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0002-6078-8763</orcidid></search><sort><creationdate>20210201</creationdate><title>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</title><author>Hallman, Kent A. ; Miller, Kevin J. ; Baydin, Andrey ; Weiss, Sharon M. ; Haglund, Richard F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2731-dfcc76bbb324be2d3e8799def97ddc031783210665720bc7307d59680f1b44893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>differential transmission</topic><topic>Femtosecond pulses</topic><topic>Fluence</topic><topic>Hybrid systems</topic><topic>Materials science</topic><topic>Optics</topic><topic>phase change</topic><topic>Phase transitions</topic><topic>Recovery time</topic><topic>Refractivity</topic><topic>Response time</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Switching</topic><topic>Thin films</topic><topic>Vanadium dioxide</topic><topic>Vanadium oxides</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Hallman, Kent A.</creatorcontrib><creatorcontrib>Miller, Kevin J.</creatorcontrib><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Weiss, Sharon M.</creatorcontrib><creatorcontrib>Haglund, Richard F.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hallman, Kent A.</au><au>Miller, Kevin J.</au><au>Baydin, Andrey</au><au>Weiss, Sharon M.</au><au>Haglund, Richard F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</atitle><jtitle>Advanced optical materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times. Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001721</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2252-3104</orcidid><orcidid>https://orcid.org/0000-0002-2701-1768</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0002-6078-8763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-02, Vol.9 (4), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2490454140
source Wiley Online Library All Journals
subjects differential transmission
Femtosecond pulses
Fluence
Hybrid systems
Materials science
Optics
phase change
Phase transitions
Recovery time
Refractivity
Response time
Silicon
silicon photonics
Switching
Thin films
Vanadium dioxide
Vanadium oxides
Waveguides
title Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub%E2%80%90Picosecond%20Response%20Time%20of%20a%20Hybrid%20VO2:Silicon%20Waveguide%20at%201550%C2%A0nm&rft.jtitle=Advanced%20optical%20materials&rft.au=Hallman,%20Kent%20A.&rft.date=2021-02-01&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001721&rft_dat=%3Cproquest_wiley%3E2490454140%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490454140&rft_id=info:pmid/&rfr_iscdi=true