Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm
Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into th...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2021-02, Vol.9 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 9 |
creator | Hallman, Kent A. Miller, Kevin J. Baydin, Andrey Weiss, Sharon M. Haglund, Richard F. |
description | Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times.
Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance. |
doi_str_mv | 10.1002/adom.202001721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2490454140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490454140</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2731-dfcc76bbb324be2d3e8799def97ddc031783210665720bc7307d59680f1b44893</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNRuXQ-4Tr3zk0zGXak_FSoVW3U5ZDITmdJkYqZRuvMRfASfxUfxSUypFFf3XPg4Bz6ETgkMCQA9z4wvhxQoABGUHKAeJTKOCAhy-C8fo0EIS-ggEExy0UPTeat_Pj7vXe6DzX1l8IMNta-CxQtXWuwLnOHJRjfO4KcZvZi7VYdW-Dl7sy-tMxZna0ziGL6_qvIEHRXZKtjB3-2jx-urxXgSTWc3t-PRNKqpYCQyRZ6LRGvNKNeWGmZTIaWxhRTG5MCISBklkCSxoKBzwUCYWCYpFERznkrWR2e73rrxr60Na7X0bVN1k4pyCTzmhENHyR317lZ2o-rGlVmzUQTU1pjaGlN7Y2p0Obvbf-wXoeVgTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490454140</pqid></control><display><type>article</type><title>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</title><source>Wiley Online Library All Journals</source><creator>Hallman, Kent A. ; Miller, Kevin J. ; Baydin, Andrey ; Weiss, Sharon M. ; Haglund, Richard F.</creator><creatorcontrib>Hallman, Kent A. ; Miller, Kevin J. ; Baydin, Andrey ; Weiss, Sharon M. ; Haglund, Richard F.</creatorcontrib><description>Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times.
Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001721</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>differential transmission ; Femtosecond pulses ; Fluence ; Hybrid systems ; Materials science ; Optics ; phase change ; Phase transitions ; Recovery time ; Refractivity ; Response time ; Silicon ; silicon photonics ; Switching ; Thin films ; Vanadium dioxide ; Vanadium oxides ; Waveguides</subject><ispartof>Advanced optical materials, 2021-02, Vol.9 (4), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2252-3104 ; 0000-0002-2701-1768 ; 0000-0002-2567-3506 ; 0000-0002-6078-8763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hallman, Kent A.</creatorcontrib><creatorcontrib>Miller, Kevin J.</creatorcontrib><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Weiss, Sharon M.</creatorcontrib><creatorcontrib>Haglund, Richard F.</creatorcontrib><title>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</title><title>Advanced optical materials</title><description>Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times.
Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.</description><subject>differential transmission</subject><subject>Femtosecond pulses</subject><subject>Fluence</subject><subject>Hybrid systems</subject><subject>Materials science</subject><subject>Optics</subject><subject>phase change</subject><subject>Phase transitions</subject><subject>Recovery time</subject><subject>Refractivity</subject><subject>Response time</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Switching</subject><subject>Thin films</subject><subject>Vanadium dioxide</subject><subject>Vanadium oxides</subject><subject>Waveguides</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AUhQdRsNRuXQ-4Tr3zk0zGXak_FSoVW3U5ZDITmdJkYqZRuvMRfASfxUfxSUypFFf3XPg4Bz6ETgkMCQA9z4wvhxQoABGUHKAeJTKOCAhy-C8fo0EIS-ggEExy0UPTeat_Pj7vXe6DzX1l8IMNta-CxQtXWuwLnOHJRjfO4KcZvZi7VYdW-Dl7sy-tMxZna0ziGL6_qvIEHRXZKtjB3-2jx-urxXgSTWc3t-PRNKqpYCQyRZ6LRGvNKNeWGmZTIaWxhRTG5MCISBklkCSxoKBzwUCYWCYpFERznkrWR2e73rrxr60Na7X0bVN1k4pyCTzmhENHyR317lZ2o-rGlVmzUQTU1pjaGlN7Y2p0Obvbf-wXoeVgTA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hallman, Kent A.</creator><creator>Miller, Kevin J.</creator><creator>Baydin, Andrey</creator><creator>Weiss, Sharon M.</creator><creator>Haglund, Richard F.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2252-3104</orcidid><orcidid>https://orcid.org/0000-0002-2701-1768</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0002-6078-8763</orcidid></search><sort><creationdate>20210201</creationdate><title>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</title><author>Hallman, Kent A. ; Miller, Kevin J. ; Baydin, Andrey ; Weiss, Sharon M. ; Haglund, Richard F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2731-dfcc76bbb324be2d3e8799def97ddc031783210665720bc7307d59680f1b44893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>differential transmission</topic><topic>Femtosecond pulses</topic><topic>Fluence</topic><topic>Hybrid systems</topic><topic>Materials science</topic><topic>Optics</topic><topic>phase change</topic><topic>Phase transitions</topic><topic>Recovery time</topic><topic>Refractivity</topic><topic>Response time</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Switching</topic><topic>Thin films</topic><topic>Vanadium dioxide</topic><topic>Vanadium oxides</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Hallman, Kent A.</creatorcontrib><creatorcontrib>Miller, Kevin J.</creatorcontrib><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Weiss, Sharon M.</creatorcontrib><creatorcontrib>Haglund, Richard F.</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hallman, Kent A.</au><au>Miller, Kevin J.</au><au>Baydin, Andrey</au><au>Weiss, Sharon M.</au><au>Haglund, Richard F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm</atitle><jtitle>Advanced optical materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2 thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2 optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2 can achieve sub‐picosecond response when small VO2 volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2 can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times.
Sub‐picosecond all‐optical switching of ultrashort TE‐mode pulses at 1550 nm is achieved in a silicon waveguide containing an embedded section of vanadium dioxide, when pumped by synchronously generated femtosecond pulses generated in an optical parametric amplifier. The nonlinear response of the hybrid waveguide creates both design challenges and novel opportunities for optimizing switching performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001721</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2252-3104</orcidid><orcidid>https://orcid.org/0000-0002-2701-1768</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0002-6078-8763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2021-02, Vol.9 (4), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2490454140 |
source | Wiley Online Library All Journals |
subjects | differential transmission Femtosecond pulses Fluence Hybrid systems Materials science Optics phase change Phase transitions Recovery time Refractivity Response time Silicon silicon photonics Switching Thin films Vanadium dioxide Vanadium oxides Waveguides |
title | Sub‐Picosecond Response Time of a Hybrid VO2:Silicon Waveguide at 1550 nm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub%E2%80%90Picosecond%20Response%20Time%20of%20a%20Hybrid%20VO2:Silicon%20Waveguide%20at%201550%C2%A0nm&rft.jtitle=Advanced%20optical%20materials&rft.au=Hallman,%20Kent%20A.&rft.date=2021-02-01&rft.volume=9&rft.issue=4&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001721&rft_dat=%3Cproquest_wiley%3E2490454140%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490454140&rft_id=info:pmid/&rfr_iscdi=true |