The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures

Creep of directionally solidified Sn-3Ag-0.5Cu wt.% (SAC305) samples with near-  orientation along the loading direction and different microstructural lengthscale is investigated under constant load tensile testing and at a range of temperatures. The creep performance improves by refining the micros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-03, Vol.50 (3), p.926-938
Hauptverfasser: Gu, Tianhong, Gourlay, Christopher M., Britton, T. Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 3
container_start_page 926
container_title Journal of electronic materials
container_volume 50
creator Gu, Tianhong
Gourlay, Christopher M.
Britton, T. Ben
description Creep of directionally solidified Sn-3Ag-0.5Cu wt.% (SAC305) samples with near-  orientation along the loading direction and different microstructural lengthscale is investigated under constant load tensile testing and at a range of temperatures. The creep performance improves by refining the microstructure, i.e. the decrease in secondary dendrite arm spacing ( λ 2 ), eutectic intermetallic spacing ( λ e ) and intermetallic compound (IMC) size, indicating a longer creep lifetime, lower creep strain rate, change in activation energy ( Q ) and increase in ductility and homogeneity in macro- and micro-structural deformation of the samples. The dominating creep mechanism is obstacle-controlled dislocation creep at room temperature and transits to lattice-associated vacancy diffusion creep at elevated temperature ( T T M  > 0.7 to 0.75). The deformation mechanisms are investigated using electron backscatter diffraction and strain heterogeneity is identified between β -Sn in dendrites and β -Sn in eutectic regions containing Ag 3 Sn and Cu 6 Sn 5 particles. The size of the recrystallised grains is modulated by the dendritic and eutectic spacings; however, the recrystalised grains in the eutectic regions for coarse-scaled samples (largest λ 2 and λ e ) is only localised next to IMCs without growth in size.
doi_str_mv 10.1007/s11664-020-08697-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490402553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490402553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1231366f0c604d29305caa850adfed59f3a71dfd75f610fffceda24bab9adabf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC59SZvHb3WBa1YkWwFbyFdJP0Qd2tye7Bb2_qCt48DcP_McOPkGuECQLktxFRKUGBAYVClTkVJ2SEUnCKhXo_JSPgCqlkXJ6Tixh3ACixwBF5Wm5c9truXdb6bO6adbeJtUnrtsm6JFXBucNRWzSUT9cUJrLqs0W7ty5kz9s6tLELfd31wcVLcubNPrqr3zkmb_d3y2pG5y8Pj9V0TmvByo4i48iV8lArEJaVHGRtTCHBWO-sLD03OVpvc-kVgve-dtYwsTKr0liz8nxMbobeQ2g_exc7vWv70KSTmokSBDApeXKxwXX8MQbn9SFsP0z40gj6CE0P0HSCpn-gaZFCfAjFZG7WLvxV_5P6Bgk8bpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490402553</pqid></control><display><type>article</type><title>The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gu, Tianhong ; Gourlay, Christopher M. ; Britton, T. Ben</creator><creatorcontrib>Gu, Tianhong ; Gourlay, Christopher M. ; Britton, T. Ben</creatorcontrib><description>Creep of directionally solidified Sn-3Ag-0.5Cu wt.% (SAC305) samples with near-  orientation along the loading direction and different microstructural lengthscale is investigated under constant load tensile testing and at a range of temperatures. The creep performance improves by refining the microstructure, i.e. the decrease in secondary dendrite arm spacing ( λ 2 ), eutectic intermetallic spacing ( λ e ) and intermetallic compound (IMC) size, indicating a longer creep lifetime, lower creep strain rate, change in activation energy ( Q ) and increase in ductility and homogeneity in macro- and micro-structural deformation of the samples. The dominating creep mechanism is obstacle-controlled dislocation creep at room temperature and transits to lattice-associated vacancy diffusion creep at elevated temperature ( T T M  &gt; 0.7 to 0.75). The deformation mechanisms are investigated using electron backscatter diffraction and strain heterogeneity is identified between β -Sn in dendrites and β -Sn in eutectic regions containing Ag 3 Sn and Cu 6 Sn 5 particles. The size of the recrystallised grains is modulated by the dendritic and eutectic spacings; however, the recrystalised grains in the eutectic regions for coarse-scaled samples (largest λ 2 and λ e ) is only localised next to IMCs without growth in size.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08697-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation mechanisms ; Dendritic structure ; Directional solidification ; Electron backscatter diffraction ; Electronics and Microelectronics ; Emerging Interconnection Technology ; Eutectics ; Grains ; Heterogeneity ; High temperature ; Homogeneity ; Instrumentation ; Interconnect ; Intermetallic compounds ; Lattice vacancies ; Materials Science ; Microstructure ; Optical and Electronic Materials ; Pb-free Solder ; Recrystallization ; Room temperature ; Solid State Physics ; Strain rate ; Tensile tests ; Tin base alloys ; TMS2020 Advanced Microelectronic Packaging ; TMS2020 Microelectronic Packaging</subject><ispartof>Journal of electronic materials, 2021-03, Vol.50 (3), p.926-938</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1231366f0c604d29305caa850adfed59f3a71dfd75f610fffceda24bab9adabf3</citedby><cites>FETCH-LOGICAL-c429t-1231366f0c604d29305caa850adfed59f3a71dfd75f610fffceda24bab9adabf3</cites><orcidid>0000-0001-5343-9365 ; 0000-0002-4930-211X ; 0000-0002-4588-6007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08697-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08697-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gu, Tianhong</creatorcontrib><creatorcontrib>Gourlay, Christopher M.</creatorcontrib><creatorcontrib>Britton, T. Ben</creatorcontrib><title>The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Creep of directionally solidified Sn-3Ag-0.5Cu wt.% (SAC305) samples with near-  orientation along the loading direction and different microstructural lengthscale is investigated under constant load tensile testing and at a range of temperatures. The creep performance improves by refining the microstructure, i.e. the decrease in secondary dendrite arm spacing ( λ 2 ), eutectic intermetallic spacing ( λ e ) and intermetallic compound (IMC) size, indicating a longer creep lifetime, lower creep strain rate, change in activation energy ( Q ) and increase in ductility and homogeneity in macro- and micro-structural deformation of the samples. The dominating creep mechanism is obstacle-controlled dislocation creep at room temperature and transits to lattice-associated vacancy diffusion creep at elevated temperature ( T T M  &gt; 0.7 to 0.75). The deformation mechanisms are investigated using electron backscatter diffraction and strain heterogeneity is identified between β -Sn in dendrites and β -Sn in eutectic regions containing Ag 3 Sn and Cu 6 Sn 5 particles. The size of the recrystallised grains is modulated by the dendritic and eutectic spacings; however, the recrystalised grains in the eutectic regions for coarse-scaled samples (largest λ 2 and λ e ) is only localised next to IMCs without growth in size.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation mechanisms</subject><subject>Dendritic structure</subject><subject>Directional solidification</subject><subject>Electron backscatter diffraction</subject><subject>Electronics and Microelectronics</subject><subject>Emerging Interconnection Technology</subject><subject>Eutectics</subject><subject>Grains</subject><subject>Heterogeneity</subject><subject>High temperature</subject><subject>Homogeneity</subject><subject>Instrumentation</subject><subject>Interconnect</subject><subject>Intermetallic compounds</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Pb-free Solder</subject><subject>Recrystallization</subject><subject>Room temperature</subject><subject>Solid State Physics</subject><subject>Strain rate</subject><subject>Tensile tests</subject><subject>Tin base alloys</subject><subject>TMS2020 Advanced Microelectronic Packaging</subject><subject>TMS2020 Microelectronic Packaging</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwNOC59SZvHb3WBa1YkWwFbyFdJP0Qd2tye7Bb2_qCt48DcP_McOPkGuECQLktxFRKUGBAYVClTkVJ2SEUnCKhXo_JSPgCqlkXJ6Tixh3ACixwBF5Wm5c9truXdb6bO6adbeJtUnrtsm6JFXBucNRWzSUT9cUJrLqs0W7ty5kz9s6tLELfd31wcVLcubNPrqr3zkmb_d3y2pG5y8Pj9V0TmvByo4i48iV8lArEJaVHGRtTCHBWO-sLD03OVpvc-kVgve-dtYwsTKr0liz8nxMbobeQ2g_exc7vWv70KSTmokSBDApeXKxwXX8MQbn9SFsP0z40gj6CE0P0HSCpn-gaZFCfAjFZG7WLvxV_5P6Bgk8bpk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Gu, Tianhong</creator><creator>Gourlay, Christopher M.</creator><creator>Britton, T. Ben</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-5343-9365</orcidid><orcidid>https://orcid.org/0000-0002-4930-211X</orcidid><orcidid>https://orcid.org/0000-0002-4588-6007</orcidid></search><sort><creationdate>20210301</creationdate><title>The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures</title><author>Gu, Tianhong ; Gourlay, Christopher M. ; Britton, T. Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1231366f0c604d29305caa850adfed59f3a71dfd75f610fffceda24bab9adabf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation mechanisms</topic><topic>Dendritic structure</topic><topic>Directional solidification</topic><topic>Electron backscatter diffraction</topic><topic>Electronics and Microelectronics</topic><topic>Emerging Interconnection Technology</topic><topic>Eutectics</topic><topic>Grains</topic><topic>Heterogeneity</topic><topic>High temperature</topic><topic>Homogeneity</topic><topic>Instrumentation</topic><topic>Interconnect</topic><topic>Intermetallic compounds</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Pb-free Solder</topic><topic>Recrystallization</topic><topic>Room temperature</topic><topic>Solid State Physics</topic><topic>Strain rate</topic><topic>Tensile tests</topic><topic>Tin base alloys</topic><topic>TMS2020 Advanced Microelectronic Packaging</topic><topic>TMS2020 Microelectronic Packaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Tianhong</creatorcontrib><creatorcontrib>Gourlay, Christopher M.</creatorcontrib><creatorcontrib>Britton, T. Ben</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Tianhong</au><au>Gourlay, Christopher M.</au><au>Britton, T. Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>926</spage><epage>938</epage><pages>926-938</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Creep of directionally solidified Sn-3Ag-0.5Cu wt.% (SAC305) samples with near-  orientation along the loading direction and different microstructural lengthscale is investigated under constant load tensile testing and at a range of temperatures. The creep performance improves by refining the microstructure, i.e. the decrease in secondary dendrite arm spacing ( λ 2 ), eutectic intermetallic spacing ( λ e ) and intermetallic compound (IMC) size, indicating a longer creep lifetime, lower creep strain rate, change in activation energy ( Q ) and increase in ductility and homogeneity in macro- and micro-structural deformation of the samples. The dominating creep mechanism is obstacle-controlled dislocation creep at room temperature and transits to lattice-associated vacancy diffusion creep at elevated temperature ( T T M  &gt; 0.7 to 0.75). The deformation mechanisms are investigated using electron backscatter diffraction and strain heterogeneity is identified between β -Sn in dendrites and β -Sn in eutectic regions containing Ag 3 Sn and Cu 6 Sn 5 particles. The size of the recrystallised grains is modulated by the dendritic and eutectic spacings; however, the recrystalised grains in the eutectic regions for coarse-scaled samples (largest λ 2 and λ e ) is only localised next to IMCs without growth in size.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08697-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5343-9365</orcidid><orcidid>https://orcid.org/0000-0002-4930-211X</orcidid><orcidid>https://orcid.org/0000-0002-4588-6007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-03, Vol.50 (3), p.926-938
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2490402553
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Deformation mechanisms
Dendritic structure
Directional solidification
Electron backscatter diffraction
Electronics and Microelectronics
Emerging Interconnection Technology
Eutectics
Grains
Heterogeneity
High temperature
Homogeneity
Instrumentation
Interconnect
Intermetallic compounds
Lattice vacancies
Materials Science
Microstructure
Optical and Electronic Materials
Pb-free Solder
Recrystallization
Room temperature
Solid State Physics
Strain rate
Tensile tests
Tin base alloys
TMS2020 Advanced Microelectronic Packaging
TMS2020 Microelectronic Packaging
title The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Lengthscale%20in%20the%20Creep%20of%20Sn-3Ag-0.5Cu%20Solder%20Microstructures&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Gu,%20Tianhong&rft.date=2021-03-01&rft.volume=50&rft.issue=3&rft.spage=926&rft.epage=938&rft.pages=926-938&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08697-4&rft_dat=%3Cproquest_cross%3E2490402553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490402553&rft_id=info:pmid/&rfr_iscdi=true