Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability
g-C 3 N 4 with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C 3 N 4 was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, s...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2021-03, Vol.50 (3), p.1067-1074 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1074 |
---|---|
container_issue | 3 |
container_start_page | 1067 |
container_title | Journal of electronic materials |
container_volume | 50 |
creator | Yang, Jing Zhang, Xianqian Xie, Chuanfang Long, Jieqing Wang, Yongqian Wei, Liang Yang, Xiande |
description | g-C
3
N
4
with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C
3
N
4
was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C
3
N
4
was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C
3
N
4
exhibited a unique porous structure with a specific surface area reaching 142.1 m
2
/g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C
3
N
4
was 116.3 m
2
/g and the photodegradation rate of MO was 65%. Moreover, g-C
3
N
4
retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments. |
doi_str_mv | 10.1007/s11664-020-08654-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490402455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490402455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdTQvXzOzLEWtIFqsgruQSZM2pc6MSYr03zt1BHeu3uLecx8chC6BXgOlxU0CUEoQyiihpZKCwBEagRScQKnej9GIcgVEMi5P0VlKG0pBQgkj9DKPrjPR5NA2uPV4Rab8SeCvkNd4FlZrvOicDT5YvNhFb6zDk-gMNs0Sz9dtbq3JZrvPhzybOmxD3p-jE2-2yV383jF6u7t9nc7I4_P9w3TySCyXKhPuQCrHfFlQxX2tilrZyisoxLK2vuxjbkylDK1oLRTjogQOTFhppABfeD5GV8NuF9vPnUtZb9pdbPqXmomKCsqElH2LDS0b25Si87qL4cPEvQaqD-704E737vSPOw09xAco9eVm5eLf9D_UN11qb-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490402455</pqid></control><display><type>article</type><title>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Jing ; Zhang, Xianqian ; Xie, Chuanfang ; Long, Jieqing ; Wang, Yongqian ; Wei, Liang ; Yang, Xiande</creator><creatorcontrib>Yang, Jing ; Zhang, Xianqian ; Xie, Chuanfang ; Long, Jieqing ; Wang, Yongqian ; Wei, Liang ; Yang, Xiande</creatorcontrib><description>g-C
3
N
4
with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C
3
N
4
was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C
3
N
4
was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C
3
N
4
exhibited a unique porous structure with a specific surface area reaching 142.1 m
2
/g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C
3
N
4
was 116.3 m
2
/g and the photodegradation rate of MO was 65%. Moreover, g-C
3
N
4
retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08654-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon nitride ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dyes ; Electron microscopy ; Electronics and Microelectronics ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Instrumentation ; Materials Science ; Microscopy ; Optical and Electronic Materials ; Original Research Article ; Photocatalysis ; Photodegradation ; Photoelectrons ; Pollutants ; Roasting ; Scavenging ; Solid State Physics ; Specific surface ; Spectrum analysis ; Structural stability ; Surface area ; Surface stability ; X ray photoelectron spectroscopy</subject><ispartof>Journal of electronic materials, 2021-03, Vol.50 (3), p.1067-1074</ispartof><rights>The Minerals, Metals & Materials Society 2021</rights><rights>The Minerals, Metals & Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</citedby><cites>FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08654-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08654-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhang, Xianqian</creatorcontrib><creatorcontrib>Xie, Chuanfang</creatorcontrib><creatorcontrib>Long, Jieqing</creatorcontrib><creatorcontrib>Wang, Yongqian</creatorcontrib><creatorcontrib>Wei, Liang</creatorcontrib><creatorcontrib>Yang, Xiande</creatorcontrib><title>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>g-C
3
N
4
with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C
3
N
4
was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C
3
N
4
was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C
3
N
4
exhibited a unique porous structure with a specific surface area reaching 142.1 m
2
/g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C
3
N
4
was 116.3 m
2
/g and the photodegradation rate of MO was 65%. Moreover, g-C
3
N
4
retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.</description><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dyes</subject><subject>Electron microscopy</subject><subject>Electronics and Microelectronics</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectrons</subject><subject>Pollutants</subject><subject>Roasting</subject><subject>Scavenging</subject><subject>Solid State Physics</subject><subject>Specific surface</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><subject>Surface area</subject><subject>Surface stability</subject><subject>X ray photoelectron spectroscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdTQvXzOzLEWtIFqsgruQSZM2pc6MSYr03zt1BHeu3uLecx8chC6BXgOlxU0CUEoQyiihpZKCwBEagRScQKnej9GIcgVEMi5P0VlKG0pBQgkj9DKPrjPR5NA2uPV4Rab8SeCvkNd4FlZrvOicDT5YvNhFb6zDk-gMNs0Sz9dtbq3JZrvPhzybOmxD3p-jE2-2yV383jF6u7t9nc7I4_P9w3TySCyXKhPuQCrHfFlQxX2tilrZyisoxLK2vuxjbkylDK1oLRTjogQOTFhppABfeD5GV8NuF9vPnUtZb9pdbPqXmomKCsqElH2LDS0b25Si87qL4cPEvQaqD-704E737vSPOw09xAco9eVm5eLf9D_UN11qb-4</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yang, Jing</creator><creator>Zhang, Xianqian</creator><creator>Xie, Chuanfang</creator><creator>Long, Jieqing</creator><creator>Wang, Yongqian</creator><creator>Wei, Liang</creator><creator>Yang, Xiande</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210301</creationdate><title>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</title><author>Yang, Jing ; Zhang, Xianqian ; Xie, Chuanfang ; Long, Jieqing ; Wang, Yongqian ; Wei, Liang ; Yang, Xiande</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dyes</topic><topic>Electron microscopy</topic><topic>Electronics and Microelectronics</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectrons</topic><topic>Pollutants</topic><topic>Roasting</topic><topic>Scavenging</topic><topic>Solid State Physics</topic><topic>Specific surface</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><topic>Surface area</topic><topic>Surface stability</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhang, Xianqian</creatorcontrib><creatorcontrib>Xie, Chuanfang</creatorcontrib><creatorcontrib>Long, Jieqing</creatorcontrib><creatorcontrib>Wang, Yongqian</creatorcontrib><creatorcontrib>Wei, Liang</creatorcontrib><creatorcontrib>Yang, Xiande</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jing</au><au>Zhang, Xianqian</au><au>Xie, Chuanfang</au><au>Long, Jieqing</au><au>Wang, Yongqian</au><au>Wei, Liang</au><au>Yang, Xiande</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>1067</spage><epage>1074</epage><pages>1067-1074</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>g-C
3
N
4
with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C
3
N
4
was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C
3
N
4
was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C
3
N
4
exhibited a unique porous structure with a specific surface area reaching 142.1 m
2
/g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C
3
N
4
was 116.3 m
2
/g and the photodegradation rate of MO was 65%. Moreover, g-C
3
N
4
retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08654-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2021-03, Vol.50 (3), p.1067-1074 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2490402455 |
source | Springer Nature - Complete Springer Journals |
subjects | Carbon nitride Catalytic activity Characterization and Evaluation of Materials Chemistry and Materials Science Dyes Electron microscopy Electronics and Microelectronics Fourier transforms Infrared analysis Infrared spectroscopy Instrumentation Materials Science Microscopy Optical and Electronic Materials Original Research Article Photocatalysis Photodegradation Photoelectrons Pollutants Roasting Scavenging Solid State Physics Specific surface Spectrum analysis Structural stability Surface area Surface stability X ray photoelectron spectroscopy |
title | Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20g-C3N4%20with%20High%20Specific%20Surface%20Area%20and%20Photocatalytic%20Stability&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Yang,%20Jing&rft.date=2021-03-01&rft.volume=50&rft.issue=3&rft.spage=1067&rft.epage=1074&rft.pages=1067-1074&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08654-1&rft_dat=%3Cproquest_cross%3E2490402455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490402455&rft_id=info:pmid/&rfr_iscdi=true |