Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability

g-C 3 N 4 with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C 3 N 4 was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-03, Vol.50 (3), p.1067-1074
Hauptverfasser: Yang, Jing, Zhang, Xianqian, Xie, Chuanfang, Long, Jieqing, Wang, Yongqian, Wei, Liang, Yang, Xiande
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1074
container_issue 3
container_start_page 1067
container_title Journal of electronic materials
container_volume 50
creator Yang, Jing
Zhang, Xianqian
Xie, Chuanfang
Long, Jieqing
Wang, Yongqian
Wei, Liang
Yang, Xiande
description g-C 3 N 4 with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C 3 N 4 was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C 3 N 4 was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C 3 N 4 exhibited a unique porous structure with a specific surface area reaching 142.1 m 2 /g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C 3 N 4 was 116.3 m 2 /g and the photodegradation rate of MO was 65%. Moreover, g-C 3 N 4 retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.
doi_str_mv 10.1007/s11664-020-08654-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490402455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490402455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdTQvXzOzLEWtIFqsgruQSZM2pc6MSYr03zt1BHeu3uLecx8chC6BXgOlxU0CUEoQyiihpZKCwBEagRScQKnej9GIcgVEMi5P0VlKG0pBQgkj9DKPrjPR5NA2uPV4Rab8SeCvkNd4FlZrvOicDT5YvNhFb6zDk-gMNs0Sz9dtbq3JZrvPhzybOmxD3p-jE2-2yV383jF6u7t9nc7I4_P9w3TySCyXKhPuQCrHfFlQxX2tilrZyisoxLK2vuxjbkylDK1oLRTjogQOTFhppABfeD5GV8NuF9vPnUtZb9pdbPqXmomKCsqElH2LDS0b25Si87qL4cPEvQaqD-704E737vSPOw09xAco9eVm5eLf9D_UN11qb-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490402455</pqid></control><display><type>article</type><title>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Jing ; Zhang, Xianqian ; Xie, Chuanfang ; Long, Jieqing ; Wang, Yongqian ; Wei, Liang ; Yang, Xiande</creator><creatorcontrib>Yang, Jing ; Zhang, Xianqian ; Xie, Chuanfang ; Long, Jieqing ; Wang, Yongqian ; Wei, Liang ; Yang, Xiande</creatorcontrib><description>g-C 3 N 4 with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C 3 N 4 was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C 3 N 4 was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C 3 N 4 exhibited a unique porous structure with a specific surface area reaching 142.1 m 2 /g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C 3 N 4 was 116.3 m 2 /g and the photodegradation rate of MO was 65%. Moreover, g-C 3 N 4 retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08654-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon nitride ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dyes ; Electron microscopy ; Electronics and Microelectronics ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Instrumentation ; Materials Science ; Microscopy ; Optical and Electronic Materials ; Original Research Article ; Photocatalysis ; Photodegradation ; Photoelectrons ; Pollutants ; Roasting ; Scavenging ; Solid State Physics ; Specific surface ; Spectrum analysis ; Structural stability ; Surface area ; Surface stability ; X ray photoelectron spectroscopy</subject><ispartof>Journal of electronic materials, 2021-03, Vol.50 (3), p.1067-1074</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</citedby><cites>FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08654-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08654-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhang, Xianqian</creatorcontrib><creatorcontrib>Xie, Chuanfang</creatorcontrib><creatorcontrib>Long, Jieqing</creatorcontrib><creatorcontrib>Wang, Yongqian</creatorcontrib><creatorcontrib>Wei, Liang</creatorcontrib><creatorcontrib>Yang, Xiande</creatorcontrib><title>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>g-C 3 N 4 with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C 3 N 4 was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C 3 N 4 was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C 3 N 4 exhibited a unique porous structure with a specific surface area reaching 142.1 m 2 /g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C 3 N 4 was 116.3 m 2 /g and the photodegradation rate of MO was 65%. Moreover, g-C 3 N 4 retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.</description><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dyes</subject><subject>Electron microscopy</subject><subject>Electronics and Microelectronics</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectrons</subject><subject>Pollutants</subject><subject>Roasting</subject><subject>Scavenging</subject><subject>Solid State Physics</subject><subject>Specific surface</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><subject>Surface area</subject><subject>Surface stability</subject><subject>X ray photoelectron spectroscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdTQvXzOzLEWtIFqsgruQSZM2pc6MSYr03zt1BHeu3uLecx8chC6BXgOlxU0CUEoQyiihpZKCwBEagRScQKnej9GIcgVEMi5P0VlKG0pBQgkj9DKPrjPR5NA2uPV4Rab8SeCvkNd4FlZrvOicDT5YvNhFb6zDk-gMNs0Sz9dtbq3JZrvPhzybOmxD3p-jE2-2yV383jF6u7t9nc7I4_P9w3TySCyXKhPuQCrHfFlQxX2tilrZyisoxLK2vuxjbkylDK1oLRTjogQOTFhppABfeD5GV8NuF9vPnUtZb9pdbPqXmomKCsqElH2LDS0b25Si87qL4cPEvQaqD-704E737vSPOw09xAco9eVm5eLf9D_UN11qb-4</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yang, Jing</creator><creator>Zhang, Xianqian</creator><creator>Xie, Chuanfang</creator><creator>Long, Jieqing</creator><creator>Wang, Yongqian</creator><creator>Wei, Liang</creator><creator>Yang, Xiande</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210301</creationdate><title>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</title><author>Yang, Jing ; Zhang, Xianqian ; Xie, Chuanfang ; Long, Jieqing ; Wang, Yongqian ; Wei, Liang ; Yang, Xiande</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-3e156e2f87063fb67b6c9f6174dbcf83e13aa96a090b46234813124c5a541f7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dyes</topic><topic>Electron microscopy</topic><topic>Electronics and Microelectronics</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectrons</topic><topic>Pollutants</topic><topic>Roasting</topic><topic>Scavenging</topic><topic>Solid State Physics</topic><topic>Specific surface</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><topic>Surface area</topic><topic>Surface stability</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Zhang, Xianqian</creatorcontrib><creatorcontrib>Xie, Chuanfang</creatorcontrib><creatorcontrib>Long, Jieqing</creatorcontrib><creatorcontrib>Wang, Yongqian</creatorcontrib><creatorcontrib>Wei, Liang</creatorcontrib><creatorcontrib>Yang, Xiande</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jing</au><au>Zhang, Xianqian</au><au>Xie, Chuanfang</au><au>Long, Jieqing</au><au>Wang, Yongqian</au><au>Wei, Liang</au><au>Yang, Xiande</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>1067</spage><epage>1074</epage><pages>1067-1074</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>g-C 3 N 4 with porous structure has been synthesized by a thermal polymerization method and its specific surface area regulated by changing the calcination temperature. The as-prepared g-C 3 N 4 was characterized by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) spectrophotometer. The photocatalytic activity of g-C 3 N 4 was investigated using Methyl Orange (MO) as target pollutant. The results show that the g-C 3 N 4 exhibited a unique porous structure with a specific surface area reaching 142.1 m 2 /g at 610°C. When the calcination temperature was 570°C, the specific surface area of g-C 3 N 4 was 116.3 m 2 /g and the photodegradation rate of MO was 65%. Moreover, g-C 3 N 4 retained good photocatalytic stability after being used for five times. The photocatalytic mechanism was also explored by free-radical scavenging experiments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08654-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-03, Vol.50 (3), p.1067-1074
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2490402455
source Springer Nature - Complete Springer Journals
subjects Carbon nitride
Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Dyes
Electron microscopy
Electronics and Microelectronics
Fourier transforms
Infrared analysis
Infrared spectroscopy
Instrumentation
Materials Science
Microscopy
Optical and Electronic Materials
Original Research Article
Photocatalysis
Photodegradation
Photoelectrons
Pollutants
Roasting
Scavenging
Solid State Physics
Specific surface
Spectrum analysis
Structural stability
Surface area
Surface stability
X ray photoelectron spectroscopy
title Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20g-C3N4%20with%20High%20Specific%20Surface%20Area%20and%20Photocatalytic%20Stability&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Yang,%20Jing&rft.date=2021-03-01&rft.volume=50&rft.issue=3&rft.spage=1067&rft.epage=1074&rft.pages=1067-1074&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08654-1&rft_dat=%3Cproquest_cross%3E2490402455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490402455&rft_id=info:pmid/&rfr_iscdi=true