Bayesian predictive model selection in circular random effects models with applications in ecological and environmental studies

In this paper we present a detailed comparison of the prediction error based model selection criteria in circular random effects models. The study is primarily motivated by the need for an understanding of their performance in real life ecological and environmental applications. Prediction errors ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and ecological statistics 2021-03, Vol.28 (1), p.21-34
Hauptverfasser: Camli, Onur, Kalaylioglu, Zeynep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 21
container_title Environmental and ecological statistics
container_volume 28
creator Camli, Onur
Kalaylioglu, Zeynep
description In this paper we present a detailed comparison of the prediction error based model selection criteria in circular random effects models. The study is primarily motivated by the need for an understanding of their performance in real life ecological and environmental applications. Prediction errors are based on posterior predictive distributions and the model selection methods are adjusted for the circular manifold. Plug-in estimators of the circular distance parameters are also considered. A Monte Carlo experiment scheme taking the account of various realistic ecological and biological scenarios is designed. We introduced a coefficient that is based on conditional expectations to examine how the deviation from von Mises (vM) distribution, the standard choice in applications, effects the performances. Our results show that the performances of widely used circular predictive model selection criteria mostly depend on the sample size as well as within-sample-correlation. The approaches and selection strategies are then applied to investigate orientational behaviour of Talitrus saltator under the risk of dehydration and direction of wind with respect to associated atmoshperic variables.
doi_str_mv 10.1007/s10651-020-00471-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490401023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490401023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9de7c72843ed834acba1c78df53501cdfc2241805988343223a7afecf739aaa53</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1D3gi8VwdoNj2qBu_kk286Jkgna5sWqjQrtmTf11qTbx5AmaeZ4a8hJwzuGQAxVVkcC1ZBhwygLxgmTggCyYLkQmA6jDdheRZKUEek5MYt5AoxuWCfN3qPUarHe0D1tYMdoe08zW2NGKL6e0dtY4aG8zY6kCDdrXvKDZNasYZjfTTDu9U931rjZ6UODlofOs3qdLSJFF0Oxu869ANqRKHsbYYT8lRo9uIZ7_nkrze372sHrP188PT6madGcGqIatqLEzBy1xgXYpcmzfNTFHWjRQSmKkbw3nOSpBVmdqCc6ELnX7YFKLSWkuxJBfz3D74jxHjoLZ-DC6tVDyvIAcGXCSKz5QJPsaAjeqD7XTYKwZqClrNQasUtPoJWk2SmKWYYLfB8Df6H-sb136DiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490401023</pqid></control><display><type>article</type><title>Bayesian predictive model selection in circular random effects models with applications in ecological and environmental studies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Camli, Onur ; Kalaylioglu, Zeynep</creator><creatorcontrib>Camli, Onur ; Kalaylioglu, Zeynep</creatorcontrib><description>In this paper we present a detailed comparison of the prediction error based model selection criteria in circular random effects models. The study is primarily motivated by the need for an understanding of their performance in real life ecological and environmental applications. Prediction errors are based on posterior predictive distributions and the model selection methods are adjusted for the circular manifold. Plug-in estimators of the circular distance parameters are also considered. A Monte Carlo experiment scheme taking the account of various realistic ecological and biological scenarios is designed. We introduced a coefficient that is based on conditional expectations to examine how the deviation from von Mises (vM) distribution, the standard choice in applications, effects the performances. Our results show that the performances of widely used circular predictive model selection criteria mostly depend on the sample size as well as within-sample-correlation. The approaches and selection strategies are then applied to investigate orientational behaviour of Talitrus saltator under the risk of dehydration and direction of wind with respect to associated atmoshperic variables.</description><identifier>ISSN: 1352-8505</identifier><identifier>EISSN: 1573-3009</identifier><identifier>DOI: 10.1007/s10651-020-00471-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Computer Science ; Dehydration ; Ecological effects ; Ecology ; Environmental studies ; Health Sciences ; Life Sciences ; Math. Appl. in Environmental Science ; Mathematical models ; Medicine ; Parameter estimation ; Physics ; Prediction models ; Predictions ; Probability theory ; Statistical methods ; Statistics for Engineering ; Statistics for Life Sciences ; Theoretical Ecology/Statistics</subject><ispartof>Environmental and ecological statistics, 2021-03, Vol.28 (1), p.21-34</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9de7c72843ed834acba1c78df53501cdfc2241805988343223a7afecf739aaa53</citedby><cites>FETCH-LOGICAL-c319t-9de7c72843ed834acba1c78df53501cdfc2241805988343223a7afecf739aaa53</cites><orcidid>0000-0002-2216-188X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10651-020-00471-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10651-020-00471-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Camli, Onur</creatorcontrib><creatorcontrib>Kalaylioglu, Zeynep</creatorcontrib><title>Bayesian predictive model selection in circular random effects models with applications in ecological and environmental studies</title><title>Environmental and ecological statistics</title><addtitle>Environ Ecol Stat</addtitle><description>In this paper we present a detailed comparison of the prediction error based model selection criteria in circular random effects models. The study is primarily motivated by the need for an understanding of their performance in real life ecological and environmental applications. Prediction errors are based on posterior predictive distributions and the model selection methods are adjusted for the circular manifold. Plug-in estimators of the circular distance parameters are also considered. A Monte Carlo experiment scheme taking the account of various realistic ecological and biological scenarios is designed. We introduced a coefficient that is based on conditional expectations to examine how the deviation from von Mises (vM) distribution, the standard choice in applications, effects the performances. Our results show that the performances of widely used circular predictive model selection criteria mostly depend on the sample size as well as within-sample-correlation. The approaches and selection strategies are then applied to investigate orientational behaviour of Talitrus saltator under the risk of dehydration and direction of wind with respect to associated atmoshperic variables.</description><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Dehydration</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Environmental studies</subject><subject>Health Sciences</subject><subject>Life Sciences</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Probability theory</subject><subject>Statistical methods</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Theoretical Ecology/Statistics</subject><issn>1352-8505</issn><issn>1573-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1PxCAQhonRxHX1D3gi8VwdoNj2qBu_kk286Jkgna5sWqjQrtmTf11qTbx5AmaeZ4a8hJwzuGQAxVVkcC1ZBhwygLxgmTggCyYLkQmA6jDdheRZKUEek5MYt5AoxuWCfN3qPUarHe0D1tYMdoe08zW2NGKL6e0dtY4aG8zY6kCDdrXvKDZNasYZjfTTDu9U931rjZ6UODlofOs3qdLSJFF0Oxu869ANqRKHsbYYT8lRo9uIZ7_nkrze372sHrP188PT6madGcGqIatqLEzBy1xgXYpcmzfNTFHWjRQSmKkbw3nOSpBVmdqCc6ELnX7YFKLSWkuxJBfz3D74jxHjoLZ-DC6tVDyvIAcGXCSKz5QJPsaAjeqD7XTYKwZqClrNQasUtPoJWk2SmKWYYLfB8Df6H-sb136DiQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Camli, Onur</creator><creator>Kalaylioglu, Zeynep</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.G</scope><scope>LK8</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2216-188X</orcidid></search><sort><creationdate>20210301</creationdate><title>Bayesian predictive model selection in circular random effects models with applications in ecological and environmental studies</title><author>Camli, Onur ; Kalaylioglu, Zeynep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9de7c72843ed834acba1c78df53501cdfc2241805988343223a7afecf739aaa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Dehydration</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Environmental studies</topic><topic>Health Sciences</topic><topic>Life Sciences</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Probability theory</topic><topic>Statistical methods</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Theoretical Ecology/Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camli, Onur</creatorcontrib><creatorcontrib>Kalaylioglu, Zeynep</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental and ecological statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camli, Onur</au><au>Kalaylioglu, Zeynep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian predictive model selection in circular random effects models with applications in ecological and environmental studies</atitle><jtitle>Environmental and ecological statistics</jtitle><stitle>Environ Ecol Stat</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>21</spage><epage>34</epage><pages>21-34</pages><issn>1352-8505</issn><eissn>1573-3009</eissn><abstract>In this paper we present a detailed comparison of the prediction error based model selection criteria in circular random effects models. The study is primarily motivated by the need for an understanding of their performance in real life ecological and environmental applications. Prediction errors are based on posterior predictive distributions and the model selection methods are adjusted for the circular manifold. Plug-in estimators of the circular distance parameters are also considered. A Monte Carlo experiment scheme taking the account of various realistic ecological and biological scenarios is designed. We introduced a coefficient that is based on conditional expectations to examine how the deviation from von Mises (vM) distribution, the standard choice in applications, effects the performances. Our results show that the performances of widely used circular predictive model selection criteria mostly depend on the sample size as well as within-sample-correlation. The approaches and selection strategies are then applied to investigate orientational behaviour of Talitrus saltator under the risk of dehydration and direction of wind with respect to associated atmoshperic variables.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10651-020-00471-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2216-188X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1352-8505
ispartof Environmental and ecological statistics, 2021-03, Vol.28 (1), p.21-34
issn 1352-8505
1573-3009
language eng
recordid cdi_proquest_journals_2490401023
source SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Biomedical and Life Sciences
Chemistry and Earth Sciences
Computer Science
Dehydration
Ecological effects
Ecology
Environmental studies
Health Sciences
Life Sciences
Math. Appl. in Environmental Science
Mathematical models
Medicine
Parameter estimation
Physics
Prediction models
Predictions
Probability theory
Statistical methods
Statistics for Engineering
Statistics for Life Sciences
Theoretical Ecology/Statistics
title Bayesian predictive model selection in circular random effects models with applications in ecological and environmental studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20predictive%20model%20selection%20in%20circular%20random%20effects%20models%20with%20applications%20in%20ecological%20and%20environmental%20studies&rft.jtitle=Environmental%20and%20ecological%20statistics&rft.au=Camli,%20Onur&rft.date=2021-03-01&rft.volume=28&rft.issue=1&rft.spage=21&rft.epage=34&rft.pages=21-34&rft.issn=1352-8505&rft.eissn=1573-3009&rft_id=info:doi/10.1007/s10651-020-00471-3&rft_dat=%3Cproquest_cross%3E2490401023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490401023&rft_id=info:pmid/&rfr_iscdi=true