Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays
We propose a novel compute-in-memory (CIM)-based ultra-low-power framework for probabilistic localization of insect-scale drones. The conventional probabilistic localization approaches rely on the three-dimensional (3D) Gaussian Mixture Model (GMM)-based representation of a 3D map. A GMM model with...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shukla, Priyesh Muralidhar, Ankith Iliev, Nick Tulabandhula, Theja Fuller, Sawyer B Trivedi, Amit Ranjan |
description | We propose a novel compute-in-memory (CIM)-based ultra-low-power framework for probabilistic localization of insect-scale drones. The conventional probabilistic localization approaches rely on the three-dimensional (3D) Gaussian Mixture Model (GMM)-based representation of a 3D map. A GMM model with hundreds of mixture functions is typically needed to adequately learn and represent the intricacies of the map. Meanwhile, localization using complex GMM map models is computationally intensive. Since insect-scale drones operate under extremely limited area/power budget, continuous localization using GMM models entails much higher operating energy -- thereby, limiting flying duration and/or size of the drone due to a larger battery. Addressing the computational challenges of localization in an insect-scale drone using a CIM approach, we propose a novel framework of 3D map representation using a harmonic mean of "Gaussian-like" mixture (HMGM) model. The likelihood function useful for drone localization can be efficiently implemented by connecting many multi-input inverters in parallel, each programmed with the parameters of the 3D map model represented as HMGM. When the depth measurements are projected to the input of the implementation, the summed current of the inverters emulates the likelihood of the measurement. We have characterized our approach on an RGB-D indoor localization dataset. The average localization error in our approach is \(\sim\)0.1125 m which is only slightly degraded than software-based evaluation (\(\sim\)0.08 m). Meanwhile, our localization framework is ultra-low-power, consuming as little as \(\sim\)17 \(\mu\)W power while processing a depth frame in 1.33 ms over hundred pose hypotheses in the particle-filtering (PF) algorithm used to localize the drone. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2490399004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490399004</sourcerecordid><originalsourceid>FETCH-proquest_journals_24903990043</originalsourceid><addsrcrecordid>eNqNyksKwjAUheEgCBbtHgKOAzFp1Q7FNzgQdV7ScispJVdvUkFXbwYuwNGB838DliitZ2KZKTViqfetlFLNFyrPdcIuZ8LKVLazPtian7A2nf2YYNFxbPjReaiDuMYX-IbQgeex7DqMxN3F3gSI6AUUgPiKyLz9hA0b03lIfztm0932tj6IB-GzBx_KFntyMZUqK6QuCikz_Z_6AujMP5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490399004</pqid></control><display><type>article</type><title>Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays</title><source>Free E- Journals</source><creator>Shukla, Priyesh ; Muralidhar, Ankith ; Iliev, Nick ; Tulabandhula, Theja ; Fuller, Sawyer B ; Trivedi, Amit Ranjan</creator><creatorcontrib>Shukla, Priyesh ; Muralidhar, Ankith ; Iliev, Nick ; Tulabandhula, Theja ; Fuller, Sawyer B ; Trivedi, Amit Ranjan</creatorcontrib><description>We propose a novel compute-in-memory (CIM)-based ultra-low-power framework for probabilistic localization of insect-scale drones. The conventional probabilistic localization approaches rely on the three-dimensional (3D) Gaussian Mixture Model (GMM)-based representation of a 3D map. A GMM model with hundreds of mixture functions is typically needed to adequately learn and represent the intricacies of the map. Meanwhile, localization using complex GMM map models is computationally intensive. Since insect-scale drones operate under extremely limited area/power budget, continuous localization using GMM models entails much higher operating energy -- thereby, limiting flying duration and/or size of the drone due to a larger battery. Addressing the computational challenges of localization in an insect-scale drone using a CIM approach, we propose a novel framework of 3D map representation using a harmonic mean of "Gaussian-like" mixture (HMGM) model. The likelihood function useful for drone localization can be efficiently implemented by connecting many multi-input inverters in parallel, each programmed with the parameters of the 3D map model represented as HMGM. When the depth measurements are projected to the input of the implementation, the summed current of the inverters emulates the likelihood of the measurement. We have characterized our approach on an RGB-D indoor localization dataset. The average localization error in our approach is \(\sim\)0.1125 m which is only slightly degraded than software-based evaluation (\(\sim\)0.08 m). Meanwhile, our localization framework is ultra-low-power, consuming as little as \(\sim\)17 \(\mu\)W power while processing a depth frame in 1.33 ms over hundred pose hypotheses in the particle-filtering (PF) algorithm used to localize the drone.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Insects ; Inverters ; Localization ; Power consumption ; Power management ; Probabilistic models ; Representations ; Three dimensional models</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shukla, Priyesh</creatorcontrib><creatorcontrib>Muralidhar, Ankith</creatorcontrib><creatorcontrib>Iliev, Nick</creatorcontrib><creatorcontrib>Tulabandhula, Theja</creatorcontrib><creatorcontrib>Fuller, Sawyer B</creatorcontrib><creatorcontrib>Trivedi, Amit Ranjan</creatorcontrib><title>Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays</title><title>arXiv.org</title><description>We propose a novel compute-in-memory (CIM)-based ultra-low-power framework for probabilistic localization of insect-scale drones. The conventional probabilistic localization approaches rely on the three-dimensional (3D) Gaussian Mixture Model (GMM)-based representation of a 3D map. A GMM model with hundreds of mixture functions is typically needed to adequately learn and represent the intricacies of the map. Meanwhile, localization using complex GMM map models is computationally intensive. Since insect-scale drones operate under extremely limited area/power budget, continuous localization using GMM models entails much higher operating energy -- thereby, limiting flying duration and/or size of the drone due to a larger battery. Addressing the computational challenges of localization in an insect-scale drone using a CIM approach, we propose a novel framework of 3D map representation using a harmonic mean of "Gaussian-like" mixture (HMGM) model. The likelihood function useful for drone localization can be efficiently implemented by connecting many multi-input inverters in parallel, each programmed with the parameters of the 3D map model represented as HMGM. When the depth measurements are projected to the input of the implementation, the summed current of the inverters emulates the likelihood of the measurement. We have characterized our approach on an RGB-D indoor localization dataset. The average localization error in our approach is \(\sim\)0.1125 m which is only slightly degraded than software-based evaluation (\(\sim\)0.08 m). Meanwhile, our localization framework is ultra-low-power, consuming as little as \(\sim\)17 \(\mu\)W power while processing a depth frame in 1.33 ms over hundred pose hypotheses in the particle-filtering (PF) algorithm used to localize the drone.</description><subject>Algorithms</subject><subject>Insects</subject><subject>Inverters</subject><subject>Localization</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Probabilistic models</subject><subject>Representations</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAUheEgCBbtHgKOAzFp1Q7FNzgQdV7ScispJVdvUkFXbwYuwNGB838DliitZ2KZKTViqfetlFLNFyrPdcIuZ8LKVLazPtian7A2nf2YYNFxbPjReaiDuMYX-IbQgeex7DqMxN3F3gSI6AUUgPiKyLz9hA0b03lIfztm0932tj6IB-GzBx_KFntyMZUqK6QuCikz_Z_6AujMP5I</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Shukla, Priyesh</creator><creator>Muralidhar, Ankith</creator><creator>Iliev, Nick</creator><creator>Tulabandhula, Theja</creator><creator>Fuller, Sawyer B</creator><creator>Trivedi, Amit Ranjan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210524</creationdate><title>Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays</title><author>Shukla, Priyesh ; Muralidhar, Ankith ; Iliev, Nick ; Tulabandhula, Theja ; Fuller, Sawyer B ; Trivedi, Amit Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24903990043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Insects</topic><topic>Inverters</topic><topic>Localization</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Probabilistic models</topic><topic>Representations</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Priyesh</creatorcontrib><creatorcontrib>Muralidhar, Ankith</creatorcontrib><creatorcontrib>Iliev, Nick</creatorcontrib><creatorcontrib>Tulabandhula, Theja</creatorcontrib><creatorcontrib>Fuller, Sawyer B</creatorcontrib><creatorcontrib>Trivedi, Amit Ranjan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, Priyesh</au><au>Muralidhar, Ankith</au><au>Iliev, Nick</au><au>Tulabandhula, Theja</au><au>Fuller, Sawyer B</au><au>Trivedi, Amit Ranjan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays</atitle><jtitle>arXiv.org</jtitle><date>2021-05-24</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We propose a novel compute-in-memory (CIM)-based ultra-low-power framework for probabilistic localization of insect-scale drones. The conventional probabilistic localization approaches rely on the three-dimensional (3D) Gaussian Mixture Model (GMM)-based representation of a 3D map. A GMM model with hundreds of mixture functions is typically needed to adequately learn and represent the intricacies of the map. Meanwhile, localization using complex GMM map models is computationally intensive. Since insect-scale drones operate under extremely limited area/power budget, continuous localization using GMM models entails much higher operating energy -- thereby, limiting flying duration and/or size of the drone due to a larger battery. Addressing the computational challenges of localization in an insect-scale drone using a CIM approach, we propose a novel framework of 3D map representation using a harmonic mean of "Gaussian-like" mixture (HMGM) model. The likelihood function useful for drone localization can be efficiently implemented by connecting many multi-input inverters in parallel, each programmed with the parameters of the 3D map model represented as HMGM. When the depth measurements are projected to the input of the implementation, the summed current of the inverters emulates the likelihood of the measurement. We have characterized our approach on an RGB-D indoor localization dataset. The average localization error in our approach is \(\sim\)0.1125 m which is only slightly degraded than software-based evaluation (\(\sim\)0.08 m). Meanwhile, our localization framework is ultra-low-power, consuming as little as \(\sim\)17 \(\mu\)W power while processing a depth frame in 1.33 ms over hundred pose hypotheses in the particle-filtering (PF) algorithm used to localize the drone.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2490399004 |
source | Free E- Journals |
subjects | Algorithms Insects Inverters Localization Power consumption Power management Probabilistic models Representations Three dimensional models |
title | Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Probabilistic%20Localization%20of%20Insect-Scale%20Drones%20on%20Floating-Gate%20Inverter%20Arrays&rft.jtitle=arXiv.org&rft.au=Shukla,%20Priyesh&rft.date=2021-05-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2490399004%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490399004&rft_id=info:pmid/&rfr_iscdi=true |