Giant fractional Shapiro steps in anisotropic Josephson junction arrays
Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. We demonstrate experimentally the appearance of giant fractional Shapiro steps in anisotropic Josephson junction arrays as unambiguous evidence of...
Gespeichert in:
Veröffentlicht in: | Communications physics 2020-03, Vol.3 (1), Article 53 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Communications physics |
container_volume | 3 |
creator | Panghotra, R. Raes, B. de Souza Silva, Clécio C. Cools, I. Keijers, W. Scheerder, J. E. Moshchalkov, V. V. Van de Vondel, J. |
description | Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. We demonstrate experimentally the appearance of giant fractional Shapiro steps in anisotropic Josephson junction arrays as unambiguous evidence of a skewed current phase relationship. Introducing anisotropy in the array results in a giant collective high frequency response that reflects the properties of a single junction, as evidenced by the observation of a Fraunhofer like magnetic field dependence of the total critical current of the system. The observed phase dynamics can be perfectly captured within an extended resistively shunted Josephson junction model. These results directly indicate the potential of Josephson junction arrays to explore the current phase relation in a very broad frequency range (down to 50 MHz) and in a wide variety of novel link materials exhibiting non-conventional current phase relationships.
Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. Here, the authors demonstrate the observation of giant fractional Shapiro steps in an anisotropic Josephson junction array, as unambiguous evidence of a skewed current phase relationship. |
doi_str_mv | 10.1038/s42005-020-0315-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490397909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490397909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-572737361eeebd6fa28a7ea2b1b618040b1a3d0052e3c08f576fab6a63e4aa2d3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpD2CzxBw423GcjKiCUlSJAZitS-pQVyUOvnTov8clSLDAdDd87927x9ilgGsBqryhXALoDCRkoITO9AmbSFVVmSo0nP7az9mMaAsAUuRgVDFhi4XHbuBtxGbwocMdf95g72PgNLieuO84dp7CEEPvG_4YyPUbCh3f7rsvBccY8UAX7KzFHbnZ95yy1_u7l_lDtnpaLOe3q6xRpRkybaRR6bBwztXrokVZonEoa1EXooQcaoFqnZ6RTjVQttokpi6wUC5HlGs1ZVejbx_Dx97RYLdhH1NusjKvQFWmgupfShlTpBQ5JEqMVBMDUXSt7aN_x3iwAuyxWDsWa1Ox9lis1UkjRw0ltntz8cf5b9EncGZ6Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377672740</pqid></control><display><type>article</type><title>Giant fractional Shapiro steps in anisotropic Josephson junction arrays</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA Free Journals</source><creator>Panghotra, R. ; Raes, B. ; de Souza Silva, Clécio C. ; Cools, I. ; Keijers, W. ; Scheerder, J. E. ; Moshchalkov, V. V. ; Van de Vondel, J.</creator><creatorcontrib>Panghotra, R. ; Raes, B. ; de Souza Silva, Clécio C. ; Cools, I. ; Keijers, W. ; Scheerder, J. E. ; Moshchalkov, V. V. ; Van de Vondel, J.</creatorcontrib><description>Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. We demonstrate experimentally the appearance of giant fractional Shapiro steps in anisotropic Josephson junction arrays as unambiguous evidence of a skewed current phase relationship. Introducing anisotropy in the array results in a giant collective high frequency response that reflects the properties of a single junction, as evidenced by the observation of a Fraunhofer like magnetic field dependence of the total critical current of the system. The observed phase dynamics can be perfectly captured within an extended resistively shunted Josephson junction model. These results directly indicate the potential of Josephson junction arrays to explore the current phase relation in a very broad frequency range (down to 50 MHz) and in a wide variety of novel link materials exhibiting non-conventional current phase relationships.
Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. Here, the authors demonstrate the observation of giant fractional Shapiro steps in an anisotropic Josephson junction array, as unambiguous evidence of a skewed current phase relationship.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-020-0315-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/925/927/1064 ; Anisotropy ; Arrays ; Critical current (superconductivity) ; Flux quantization ; Frequency ranges ; Frequency response ; Josephson junctions ; Magnetic flux ; Phase relationships ; Physics ; Physics and Astronomy ; Superconducting supercolliders</subject><ispartof>Communications physics, 2020-03, Vol.3 (1), Article 53</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-572737361eeebd6fa28a7ea2b1b618040b1a3d0052e3c08f576fab6a63e4aa2d3</citedby><cites>FETCH-LOGICAL-c387t-572737361eeebd6fa28a7ea2b1b618040b1a3d0052e3c08f576fab6a63e4aa2d3</cites><orcidid>0000-0003-0928-0654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42005-020-0315-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s42005-020-0315-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Panghotra, R.</creatorcontrib><creatorcontrib>Raes, B.</creatorcontrib><creatorcontrib>de Souza Silva, Clécio C.</creatorcontrib><creatorcontrib>Cools, I.</creatorcontrib><creatorcontrib>Keijers, W.</creatorcontrib><creatorcontrib>Scheerder, J. E.</creatorcontrib><creatorcontrib>Moshchalkov, V. V.</creatorcontrib><creatorcontrib>Van de Vondel, J.</creatorcontrib><title>Giant fractional Shapiro steps in anisotropic Josephson junction arrays</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. We demonstrate experimentally the appearance of giant fractional Shapiro steps in anisotropic Josephson junction arrays as unambiguous evidence of a skewed current phase relationship. Introducing anisotropy in the array results in a giant collective high frequency response that reflects the properties of a single junction, as evidenced by the observation of a Fraunhofer like magnetic field dependence of the total critical current of the system. The observed phase dynamics can be perfectly captured within an extended resistively shunted Josephson junction model. These results directly indicate the potential of Josephson junction arrays to explore the current phase relation in a very broad frequency range (down to 50 MHz) and in a wide variety of novel link materials exhibiting non-conventional current phase relationships.
Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. Here, the authors demonstrate the observation of giant fractional Shapiro steps in an anisotropic Josephson junction array, as unambiguous evidence of a skewed current phase relationship.</description><subject>639/301/119/1003</subject><subject>639/925/927/1064</subject><subject>Anisotropy</subject><subject>Arrays</subject><subject>Critical current (superconductivity)</subject><subject>Flux quantization</subject><subject>Frequency ranges</subject><subject>Frequency response</subject><subject>Josephson junctions</subject><subject>Magnetic flux</subject><subject>Phase relationships</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Superconducting supercolliders</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhS0EElXpD2CzxBw423GcjKiCUlSJAZitS-pQVyUOvnTov8clSLDAdDd87927x9ilgGsBqryhXALoDCRkoITO9AmbSFVVmSo0nP7az9mMaAsAUuRgVDFhi4XHbuBtxGbwocMdf95g72PgNLieuO84dp7CEEPvG_4YyPUbCh3f7rsvBccY8UAX7KzFHbnZ95yy1_u7l_lDtnpaLOe3q6xRpRkybaRR6bBwztXrokVZonEoa1EXooQcaoFqnZ6RTjVQttokpi6wUC5HlGs1ZVejbx_Dx97RYLdhH1NusjKvQFWmgupfShlTpBQ5JEqMVBMDUXSt7aN_x3iwAuyxWDsWa1Ox9lis1UkjRw0ltntz8cf5b9EncGZ6Hw</recordid><startdate>20200316</startdate><enddate>20200316</enddate><creator>Panghotra, R.</creator><creator>Raes, B.</creator><creator>de Souza Silva, Clécio C.</creator><creator>Cools, I.</creator><creator>Keijers, W.</creator><creator>Scheerder, J. E.</creator><creator>Moshchalkov, V. V.</creator><creator>Van de Vondel, J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0928-0654</orcidid></search><sort><creationdate>20200316</creationdate><title>Giant fractional Shapiro steps in anisotropic Josephson junction arrays</title><author>Panghotra, R. ; Raes, B. ; de Souza Silva, Clécio C. ; Cools, I. ; Keijers, W. ; Scheerder, J. E. ; Moshchalkov, V. V. ; Van de Vondel, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-572737361eeebd6fa28a7ea2b1b618040b1a3d0052e3c08f576fab6a63e4aa2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/119/1003</topic><topic>639/925/927/1064</topic><topic>Anisotropy</topic><topic>Arrays</topic><topic>Critical current (superconductivity)</topic><topic>Flux quantization</topic><topic>Frequency ranges</topic><topic>Frequency response</topic><topic>Josephson junctions</topic><topic>Magnetic flux</topic><topic>Phase relationships</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Superconducting supercolliders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panghotra, R.</creatorcontrib><creatorcontrib>Raes, B.</creatorcontrib><creatorcontrib>de Souza Silva, Clécio C.</creatorcontrib><creatorcontrib>Cools, I.</creatorcontrib><creatorcontrib>Keijers, W.</creatorcontrib><creatorcontrib>Scheerder, J. E.</creatorcontrib><creatorcontrib>Moshchalkov, V. V.</creatorcontrib><creatorcontrib>Van de Vondel, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panghotra, R.</au><au>Raes, B.</au><au>de Souza Silva, Clécio C.</au><au>Cools, I.</au><au>Keijers, W.</au><au>Scheerder, J. E.</au><au>Moshchalkov, V. V.</au><au>Van de Vondel, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant fractional Shapiro steps in anisotropic Josephson junction arrays</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2020-03-16</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><artnum>53</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. We demonstrate experimentally the appearance of giant fractional Shapiro steps in anisotropic Josephson junction arrays as unambiguous evidence of a skewed current phase relationship. Introducing anisotropy in the array results in a giant collective high frequency response that reflects the properties of a single junction, as evidenced by the observation of a Fraunhofer like magnetic field dependence of the total critical current of the system. The observed phase dynamics can be perfectly captured within an extended resistively shunted Josephson junction model. These results directly indicate the potential of Josephson junction arrays to explore the current phase relation in a very broad frequency range (down to 50 MHz) and in a wide variety of novel link materials exhibiting non-conventional current phase relationships.
Giant fractional Shapiro steps have been observed in Josephson junction arrays as resulting from magnetic flux quantization in the two-dimensional array. Here, the authors demonstrate the observation of giant fractional Shapiro steps in an anisotropic Josephson junction array, as unambiguous evidence of a skewed current phase relationship.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-020-0315-5</doi><orcidid>https://orcid.org/0000-0003-0928-0654</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3650 |
ispartof | Communications physics, 2020-03, Vol.3 (1), Article 53 |
issn | 2399-3650 2399-3650 |
language | eng |
recordid | cdi_proquest_journals_2490397909 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Springer Nature OA Free Journals |
subjects | 639/301/119/1003 639/925/927/1064 Anisotropy Arrays Critical current (superconductivity) Flux quantization Frequency ranges Frequency response Josephson junctions Magnetic flux Phase relationships Physics Physics and Astronomy Superconducting supercolliders |
title | Giant fractional Shapiro steps in anisotropic Josephson junction arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20fractional%20Shapiro%20steps%20in%20anisotropic%20Josephson%20junction%20arrays&rft.jtitle=Communications%20physics&rft.au=Panghotra,%20R.&rft.date=2020-03-16&rft.volume=3&rft.issue=1&rft.artnum=53&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-020-0315-5&rft_dat=%3Cproquest_cross%3E2490397909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377672740&rft_id=info:pmid/&rfr_iscdi=true |