Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces
In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functi...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2020-12, Vol.72 (12), p.4380-4392 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4392 |
---|---|
container_issue | 12 |
container_start_page | 4380 |
container_title | JOM (1989) |
container_volume | 72 |
creator | Rafiei, Mohammad H. Gu, Yejun El-Awady, Jaafar A. |
description | In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations. |
doi_str_mv | 10.1007/s11837-020-04389-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490286982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490286982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH4ntERUClYIYgNlyHKekKk6xU1X8e1yCxMZ0NzzPe7oXoUsK1xRA3iRKFZcEGBAQXGmyP0IzWghOqCrocd5BSCIUV6foLKU1ZEloOkP1k3XvffC49jaGPqzw0OG7Pm0GZ8d-CGQZ2p3zLX4Zo08JV73ftAnb0OJlGH207kDhaojOp3N00tlN8he_c47eqvvXxSOpnx-Wi9uaOE71SHhHdWGhdZ1wZQNKeFHIAiRvrBTcWs9E0YATUrNGCqAqv0RLJrXtSsmV4nN0NeVu4_C582k062EXQz5pmNDAVKkVyxSbKBeHlKLvzDb2HzZ-GQrm0JqZWjO5NfPTmtlniU9SynBY-fgX_Y_1DTAgbrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490286982</pqid></control><display><type>article</type><title>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rafiei, Mohammad H. ; Gu, Yejun ; El-Awady, Jaafar A.</creator><creatorcontrib>Rafiei, Mohammad H. ; Gu, Yejun ; El-Awady, Jaafar A.</creatorcontrib><description>In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04389-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial neural networks ; Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification ; Chemistry/Food Science ; Continuity (mathematics) ; Earth Sciences ; Engineering ; Environment ; Exact solutions ; Machine learning ; Neural networks ; Physics ; Simulation ; Stress distribution</subject><ispartof>JOM (1989), 2020-12, Vol.72 (12), p.4380-4392</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</citedby><cites>FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</cites><orcidid>0000-0002-5715-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04389-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04389-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rafiei, Mohammad H.</creatorcontrib><creatorcontrib>Gu, Yejun</creatorcontrib><creatorcontrib>El-Awady, Jaafar A.</creatorcontrib><title>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification</subject><subject>Chemistry/Food Science</subject><subject>Continuity (mathematics)</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Exact solutions</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Simulation</subject><subject>Stress distribution</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH4ntERUClYIYgNlyHKekKk6xU1X8e1yCxMZ0NzzPe7oXoUsK1xRA3iRKFZcEGBAQXGmyP0IzWghOqCrocd5BSCIUV6foLKU1ZEloOkP1k3XvffC49jaGPqzw0OG7Pm0GZ8d-CGQZ2p3zLX4Zo08JV73ftAnb0OJlGH207kDhaojOp3N00tlN8he_c47eqvvXxSOpnx-Wi9uaOE71SHhHdWGhdZ1wZQNKeFHIAiRvrBTcWs9E0YATUrNGCqAqv0RLJrXtSsmV4nN0NeVu4_C582k062EXQz5pmNDAVKkVyxSbKBeHlKLvzDb2HzZ-GQrm0JqZWjO5NfPTmtlniU9SynBY-fgX_Y_1DTAgbrQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Rafiei, Mohammad H.</creator><creator>Gu, Yejun</creator><creator>El-Awady, Jaafar A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5715-2481</orcidid></search><sort><creationdate>20201201</creationdate><title>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</title><author>Rafiei, Mohammad H. ; Gu, Yejun ; El-Awady, Jaafar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification</topic><topic>Chemistry/Food Science</topic><topic>Continuity (mathematics)</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Exact solutions</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Simulation</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafiei, Mohammad H.</creatorcontrib><creatorcontrib>Gu, Yejun</creatorcontrib><creatorcontrib>El-Awady, Jaafar A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafiei, Mohammad H.</au><au>Gu, Yejun</au><au>El-Awady, Jaafar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>72</volume><issue>12</issue><spage>4380</spage><epage>4392</epage><pages>4380-4392</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04389-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5715-2481</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2020-12, Vol.72 (12), p.4380-4392 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2490286982 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Artificial neural networks Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification Chemistry/Food Science Continuity (mathematics) Earth Sciences Engineering Environment Exact solutions Machine learning Neural networks Physics Simulation Stress distribution |
title | Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20of%20Dislocation-Induced%20Stress%20Fields%20and%20Interaction%20Forces&rft.jtitle=JOM%20(1989)&rft.au=Rafiei,%20Mohammad%20H.&rft.date=2020-12-01&rft.volume=72&rft.issue=12&rft.spage=4380&rft.epage=4392&rft.pages=4380-4392&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04389-w&rft_dat=%3Cproquest_cross%3E2490286982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490286982&rft_id=info:pmid/&rfr_iscdi=true |