Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces

In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-12, Vol.72 (12), p.4380-4392
Hauptverfasser: Rafiei, Mohammad H., Gu, Yejun, El-Awady, Jaafar A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4392
container_issue 12
container_start_page 4380
container_title JOM (1989)
container_volume 72
creator Rafiei, Mohammad H.
Gu, Yejun
El-Awady, Jaafar A.
description In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.
doi_str_mv 10.1007/s11837-020-04389-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490286982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490286982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH4ntERUClYIYgNlyHKekKk6xU1X8e1yCxMZ0NzzPe7oXoUsK1xRA3iRKFZcEGBAQXGmyP0IzWghOqCrocd5BSCIUV6foLKU1ZEloOkP1k3XvffC49jaGPqzw0OG7Pm0GZ8d-CGQZ2p3zLX4Zo08JV73ftAnb0OJlGH207kDhaojOp3N00tlN8he_c47eqvvXxSOpnx-Wi9uaOE71SHhHdWGhdZ1wZQNKeFHIAiRvrBTcWs9E0YATUrNGCqAqv0RLJrXtSsmV4nN0NeVu4_C582k062EXQz5pmNDAVKkVyxSbKBeHlKLvzDb2HzZ-GQrm0JqZWjO5NfPTmtlniU9SynBY-fgX_Y_1DTAgbrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490286982</pqid></control><display><type>article</type><title>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rafiei, Mohammad H. ; Gu, Yejun ; El-Awady, Jaafar A.</creator><creatorcontrib>Rafiei, Mohammad H. ; Gu, Yejun ; El-Awady, Jaafar A.</creatorcontrib><description>In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04389-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial neural networks ; Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification ; Chemistry/Food Science ; Continuity (mathematics) ; Earth Sciences ; Engineering ; Environment ; Exact solutions ; Machine learning ; Neural networks ; Physics ; Simulation ; Stress distribution</subject><ispartof>JOM (1989), 2020-12, Vol.72 (12), p.4380-4392</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</citedby><cites>FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</cites><orcidid>0000-0002-5715-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04389-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04389-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rafiei, Mohammad H.</creatorcontrib><creatorcontrib>Gu, Yejun</creatorcontrib><creatorcontrib>El-Awady, Jaafar A.</creatorcontrib><title>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification</subject><subject>Chemistry/Food Science</subject><subject>Continuity (mathematics)</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Exact solutions</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Simulation</subject><subject>Stress distribution</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH4ntERUClYIYgNlyHKekKk6xU1X8e1yCxMZ0NzzPe7oXoUsK1xRA3iRKFZcEGBAQXGmyP0IzWghOqCrocd5BSCIUV6foLKU1ZEloOkP1k3XvffC49jaGPqzw0OG7Pm0GZ8d-CGQZ2p3zLX4Zo08JV73ftAnb0OJlGH207kDhaojOp3N00tlN8he_c47eqvvXxSOpnx-Wi9uaOE71SHhHdWGhdZ1wZQNKeFHIAiRvrBTcWs9E0YATUrNGCqAqv0RLJrXtSsmV4nN0NeVu4_C582k062EXQz5pmNDAVKkVyxSbKBeHlKLvzDb2HzZ-GQrm0JqZWjO5NfPTmtlniU9SynBY-fgX_Y_1DTAgbrQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Rafiei, Mohammad H.</creator><creator>Gu, Yejun</creator><creator>El-Awady, Jaafar A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5715-2481</orcidid></search><sort><creationdate>20201201</creationdate><title>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</title><author>Rafiei, Mohammad H. ; Gu, Yejun ; El-Awady, Jaafar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3f195a0dcf4c6b084e4575073ba743aae245b0c4792b7401804316279af673883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification</topic><topic>Chemistry/Food Science</topic><topic>Continuity (mathematics)</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Exact solutions</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Simulation</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafiei, Mohammad H.</creatorcontrib><creatorcontrib>Gu, Yejun</creatorcontrib><creatorcontrib>El-Awady, Jaafar A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafiei, Mohammad H.</au><au>Gu, Yejun</au><au>El-Awady, Jaafar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>72</volume><issue>12</issue><spage>4380</spage><epage>4392</epage><pages>4380-4392</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>In discrete dislocation dynamics (DDD) simulations dislocation-induced stress fields and dislocation–dislocation interaction forces are typically evaluated using analytically described multiparameter continuous functions. The universal approximation theory guarantees the approximation of such functions by some machine learning (ML) techniques, which in turn can potentially help to accelerate DDD simulations. However, accurate machine approximation is as crucial as its acceleration. Here, we demonstrate the feasibility of utilizing deep neural networks to predict dislocation-induced stress fields and dislocation–dislocation interaction forces. We also show that the trained network produces estimates that are in very good agreement with analytical solutions. This was only plausible by generating an enriched data repository to avoid bias in the training data. This work opens the door to further development of more optimized ML architectures that could lead to a more computationally efficient, yet accurate, approach to replace the generally inefficient analytical calculations of dislocation–dislocation interaction forces in DDD simulations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04389-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5715-2481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2020-12, Vol.72 (12), p.4380-4392
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2490286982
source SpringerLink Journals - AutoHoldings
subjects Approximation
Artificial neural networks
Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
Chemistry/Food Science
Continuity (mathematics)
Earth Sciences
Engineering
Environment
Exact solutions
Machine learning
Neural networks
Physics
Simulation
Stress distribution
title Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20of%20Dislocation-Induced%20Stress%20Fields%20and%20Interaction%20Forces&rft.jtitle=JOM%20(1989)&rft.au=Rafiei,%20Mohammad%20H.&rft.date=2020-12-01&rft.volume=72&rft.issue=12&rft.spage=4380&rft.epage=4392&rft.pages=4380-4392&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04389-w&rft_dat=%3Cproquest_cross%3E2490286982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490286982&rft_id=info:pmid/&rfr_iscdi=true