High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys

Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2019-10, Vol.71 (10), p.3368-3377
Hauptverfasser: Chen, Youxing, Hintsala, Eric, Li, Nan, Becker, Bernard R., Cheng, Justin Y., Nowakowski, Bartosz, Weaver, Jordan, Stauffer, Douglas, Mara, Nathan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3377
container_issue 10
container_start_page 3368
container_title JOM (1989)
container_volume 71
creator Chen, Youxing
Hintsala, Eric
Li, Nan
Becker, Bernard R.
Cheng, Justin Y.
Nowakowski, Bartosz
Weaver, Jordan
Stauffer, Douglas
Mara, Nathan A.
description Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al x FeCrNiMn ( x  = 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al 0.3 FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.
doi_str_mv 10.1007/s11837-019-03714-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490285883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490285883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYsoOKd_wKeAz9Gkadb0cczphDmFzeeQpjdtRpfWpAX35k-32wTffLoX7vnO4Z4ouqXknhKSPgRKBUsxoRkmLKUJjs-iEeUJw1Rwej7sJElxIpi4jK5C2JIBSjI6ir4XtqzwpvJNX1Zt36GVcs0OdKWc1apGa-0BnHUlagx6r1QAvG5BW2M1Uq5AG9i14FXXe8CP0IIrwHVooXzhIARkHZrWX08w8yv76tAxbO4637T74VA3-3AdXRhVB7j5nePo42m-mS3w8u35ZTZdYs0E73BKKSkSoZnhwCeaaM0PjxKRJyBoVpiYTwqqeFoAUZDHAkDkGSMcjDF5odk4ujv5tr757CF0ctv03g2RMk4yEgsuBBtU8UmlfROCByNbb3fK7yUl8tC0PDUth6blsWkZDxA7QWEQuxL8n_U_1A__RIMZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490285883</pqid></control><display><type>article</type><title>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Youxing ; Hintsala, Eric ; Li, Nan ; Becker, Bernard R. ; Cheng, Justin Y. ; Nowakowski, Bartosz ; Weaver, Jordan ; Stauffer, Douglas ; Mara, Nathan A.</creator><creatorcontrib>Chen, Youxing ; Hintsala, Eric ; Li, Nan ; Becker, Bernard R. ; Cheng, Justin Y. ; Nowakowski, Bartosz ; Weaver, Jordan ; Stauffer, Douglas ; Mara, Nathan A.</creatorcontrib><description>Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al x FeCrNiMn ( x  = 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al 0.3 FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03714-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy development ; Body centered cubic lattice ; Chemistry/Food Science ; Datasets ; Earth Sciences ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Hardness ; High entropy alloys ; High temperature ; Mapping ; Mechanical properties ; Morphology ; Nanoindentation ; New Developments in Nanomechanical Methods ; Nuclear reactors ; Oxidation ; Phases ; Physics ; Precipitates ; Radiation ; Room temperature ; Scanning electron microscopy ; Statistical analysis ; Temperature ; Temperature control ; Temperature dependence</subject><ispartof>JOM (1989), 2019-10, Vol.71 (10), p.3368-3377</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Copyright Springer Nature B.V. Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</citedby><cites>FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</cites><orcidid>0000-0003-1111-4495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03714-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03714-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Youxing</creatorcontrib><creatorcontrib>Hintsala, Eric</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Becker, Bernard R.</creatorcontrib><creatorcontrib>Cheng, Justin Y.</creatorcontrib><creatorcontrib>Nowakowski, Bartosz</creatorcontrib><creatorcontrib>Weaver, Jordan</creatorcontrib><creatorcontrib>Stauffer, Douglas</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><title>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al x FeCrNiMn ( x  = 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al 0.3 FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.</description><subject>Alloy development</subject><subject>Body centered cubic lattice</subject><subject>Chemistry/Food Science</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>Mapping</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoindentation</subject><subject>New Developments in Nanomechanical Methods</subject><subject>Nuclear reactors</subject><subject>Oxidation</subject><subject>Phases</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Radiation</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Statistical analysis</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature dependence</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kFFLwzAUhYsoOKd_wKeAz9Gkadb0cczphDmFzeeQpjdtRpfWpAX35k-32wTffLoX7vnO4Z4ouqXknhKSPgRKBUsxoRkmLKUJjs-iEeUJw1Rwej7sJElxIpi4jK5C2JIBSjI6ir4XtqzwpvJNX1Zt36GVcs0OdKWc1apGa-0BnHUlagx6r1QAvG5BW2M1Uq5AG9i14FXXe8CP0IIrwHVooXzhIARkHZrWX08w8yv76tAxbO4637T74VA3-3AdXRhVB7j5nePo42m-mS3w8u35ZTZdYs0E73BKKSkSoZnhwCeaaM0PjxKRJyBoVpiYTwqqeFoAUZDHAkDkGSMcjDF5odk4ujv5tr757CF0ctv03g2RMk4yEgsuBBtU8UmlfROCByNbb3fK7yUl8tC0PDUth6blsWkZDxA7QWEQuxL8n_U_1A__RIMZ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Chen, Youxing</creator><creator>Hintsala, Eric</creator><creator>Li, Nan</creator><creator>Becker, Bernard R.</creator><creator>Cheng, Justin Y.</creator><creator>Nowakowski, Bartosz</creator><creator>Weaver, Jordan</creator><creator>Stauffer, Douglas</creator><creator>Mara, Nathan A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-1111-4495</orcidid></search><sort><creationdate>20191001</creationdate><title>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</title><author>Chen, Youxing ; Hintsala, Eric ; Li, Nan ; Becker, Bernard R. ; Cheng, Justin Y. ; Nowakowski, Bartosz ; Weaver, Jordan ; Stauffer, Douglas ; Mara, Nathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy development</topic><topic>Body centered cubic lattice</topic><topic>Chemistry/Food Science</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>Mapping</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoindentation</topic><topic>New Developments in Nanomechanical Methods</topic><topic>Nuclear reactors</topic><topic>Oxidation</topic><topic>Phases</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Radiation</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Statistical analysis</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Youxing</creatorcontrib><creatorcontrib>Hintsala, Eric</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Becker, Bernard R.</creatorcontrib><creatorcontrib>Cheng, Justin Y.</creatorcontrib><creatorcontrib>Nowakowski, Bartosz</creatorcontrib><creatorcontrib>Weaver, Jordan</creatorcontrib><creatorcontrib>Stauffer, Douglas</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Youxing</au><au>Hintsala, Eric</au><au>Li, Nan</au><au>Becker, Bernard R.</au><au>Cheng, Justin Y.</au><au>Nowakowski, Bartosz</au><au>Weaver, Jordan</au><au>Stauffer, Douglas</au><au>Mara, Nathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>71</volume><issue>10</issue><spage>3368</spage><epage>3377</epage><pages>3368-3377</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al x FeCrNiMn ( x  = 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al 0.3 FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03714-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1111-4495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2019-10, Vol.71 (10), p.3368-3377
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2490285883
source SpringerLink Journals - AutoHoldings
subjects Alloy development
Body centered cubic lattice
Chemistry/Food Science
Datasets
Earth Sciences
Engineering
Entropy
Environment
Face centered cubic lattice
Hardness
High entropy alloys
High temperature
Mapping
Mechanical properties
Morphology
Nanoindentation
New Developments in Nanomechanical Methods
Nuclear reactors
Oxidation
Phases
Physics
Precipitates
Radiation
Room temperature
Scanning electron microscopy
Statistical analysis
Temperature
Temperature control
Temperature dependence
title High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Nanomechanical%20Screening%20of%20Phase-Specific%20and%20Temperature-Dependent%20Hardness%20in%20AlxFeCrNiMn%20High-Entropy%20Alloys&rft.jtitle=JOM%20(1989)&rft.au=Chen,%20Youxing&rft.date=2019-10-01&rft.volume=71&rft.issue=10&rft.spage=3368&rft.epage=3377&rft.pages=3368-3377&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03714-2&rft_dat=%3Cproquest_cross%3E2490285883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490285883&rft_id=info:pmid/&rfr_iscdi=true