High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys
Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HE...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2019-10, Vol.71 (10), p.3368-3377 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3377 |
---|---|
container_issue | 10 |
container_start_page | 3368 |
container_title | JOM (1989) |
container_volume | 71 |
creator | Chen, Youxing Hintsala, Eric Li, Nan Becker, Bernard R. Cheng, Justin Y. Nowakowski, Bartosz Weaver, Jordan Stauffer, Douglas Mara, Nathan A. |
description | Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al
x
FeCrNiMn (
x
= 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al
0.3
FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness. |
doi_str_mv | 10.1007/s11837-019-03714-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490285883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490285883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYsoOKd_wKeAz9Gkadb0cczphDmFzeeQpjdtRpfWpAX35k-32wTffLoX7vnO4Z4ouqXknhKSPgRKBUsxoRkmLKUJjs-iEeUJw1Rwej7sJElxIpi4jK5C2JIBSjI6ir4XtqzwpvJNX1Zt36GVcs0OdKWc1apGa-0BnHUlagx6r1QAvG5BW2M1Uq5AG9i14FXXe8CP0IIrwHVooXzhIARkHZrWX08w8yv76tAxbO4637T74VA3-3AdXRhVB7j5nePo42m-mS3w8u35ZTZdYs0E73BKKSkSoZnhwCeaaM0PjxKRJyBoVpiYTwqqeFoAUZDHAkDkGSMcjDF5odk4ujv5tr757CF0ctv03g2RMk4yEgsuBBtU8UmlfROCByNbb3fK7yUl8tC0PDUth6blsWkZDxA7QWEQuxL8n_U_1A__RIMZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490285883</pqid></control><display><type>article</type><title>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Youxing ; Hintsala, Eric ; Li, Nan ; Becker, Bernard R. ; Cheng, Justin Y. ; Nowakowski, Bartosz ; Weaver, Jordan ; Stauffer, Douglas ; Mara, Nathan A.</creator><creatorcontrib>Chen, Youxing ; Hintsala, Eric ; Li, Nan ; Becker, Bernard R. ; Cheng, Justin Y. ; Nowakowski, Bartosz ; Weaver, Jordan ; Stauffer, Douglas ; Mara, Nathan A.</creatorcontrib><description>Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al
x
FeCrNiMn (
x
= 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al
0.3
FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03714-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy development ; Body centered cubic lattice ; Chemistry/Food Science ; Datasets ; Earth Sciences ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Hardness ; High entropy alloys ; High temperature ; Mapping ; Mechanical properties ; Morphology ; Nanoindentation ; New Developments in Nanomechanical Methods ; Nuclear reactors ; Oxidation ; Phases ; Physics ; Precipitates ; Radiation ; Room temperature ; Scanning electron microscopy ; Statistical analysis ; Temperature ; Temperature control ; Temperature dependence</subject><ispartof>JOM (1989), 2019-10, Vol.71 (10), p.3368-3377</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Copyright Springer Nature B.V. Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</citedby><cites>FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</cites><orcidid>0000-0003-1111-4495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03714-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03714-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Youxing</creatorcontrib><creatorcontrib>Hintsala, Eric</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Becker, Bernard R.</creatorcontrib><creatorcontrib>Cheng, Justin Y.</creatorcontrib><creatorcontrib>Nowakowski, Bartosz</creatorcontrib><creatorcontrib>Weaver, Jordan</creatorcontrib><creatorcontrib>Stauffer, Douglas</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><title>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al
x
FeCrNiMn (
x
= 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al
0.3
FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.</description><subject>Alloy development</subject><subject>Body centered cubic lattice</subject><subject>Chemistry/Food Science</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>Mapping</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoindentation</subject><subject>New Developments in Nanomechanical Methods</subject><subject>Nuclear reactors</subject><subject>Oxidation</subject><subject>Phases</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Radiation</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Statistical analysis</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature dependence</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kFFLwzAUhYsoOKd_wKeAz9Gkadb0cczphDmFzeeQpjdtRpfWpAX35k-32wTffLoX7vnO4Z4ouqXknhKSPgRKBUsxoRkmLKUJjs-iEeUJw1Rwej7sJElxIpi4jK5C2JIBSjI6ir4XtqzwpvJNX1Zt36GVcs0OdKWc1apGa-0BnHUlagx6r1QAvG5BW2M1Uq5AG9i14FXXe8CP0IIrwHVooXzhIARkHZrWX08w8yv76tAxbO4637T74VA3-3AdXRhVB7j5nePo42m-mS3w8u35ZTZdYs0E73BKKSkSoZnhwCeaaM0PjxKRJyBoVpiYTwqqeFoAUZDHAkDkGSMcjDF5odk4ujv5tr757CF0ctv03g2RMk4yEgsuBBtU8UmlfROCByNbb3fK7yUl8tC0PDUth6blsWkZDxA7QWEQuxL8n_U_1A__RIMZ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Chen, Youxing</creator><creator>Hintsala, Eric</creator><creator>Li, Nan</creator><creator>Becker, Bernard R.</creator><creator>Cheng, Justin Y.</creator><creator>Nowakowski, Bartosz</creator><creator>Weaver, Jordan</creator><creator>Stauffer, Douglas</creator><creator>Mara, Nathan A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-1111-4495</orcidid></search><sort><creationdate>20191001</creationdate><title>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</title><author>Chen, Youxing ; Hintsala, Eric ; Li, Nan ; Becker, Bernard R. ; Cheng, Justin Y. ; Nowakowski, Bartosz ; Weaver, Jordan ; Stauffer, Douglas ; Mara, Nathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7110d48c3f5e56c0cc5037108b4e819df256d1a57de0aeb28ee8b9305efffbdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy development</topic><topic>Body centered cubic lattice</topic><topic>Chemistry/Food Science</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>Mapping</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoindentation</topic><topic>New Developments in Nanomechanical Methods</topic><topic>Nuclear reactors</topic><topic>Oxidation</topic><topic>Phases</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Radiation</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Statistical analysis</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Youxing</creatorcontrib><creatorcontrib>Hintsala, Eric</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Becker, Bernard R.</creatorcontrib><creatorcontrib>Cheng, Justin Y.</creatorcontrib><creatorcontrib>Nowakowski, Bartosz</creatorcontrib><creatorcontrib>Weaver, Jordan</creatorcontrib><creatorcontrib>Stauffer, Douglas</creatorcontrib><creatorcontrib>Mara, Nathan A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Youxing</au><au>Hintsala, Eric</au><au>Li, Nan</au><au>Becker, Bernard R.</au><au>Cheng, Justin Y.</au><au>Nowakowski, Bartosz</au><au>Weaver, Jordan</au><au>Stauffer, Douglas</au><au>Mara, Nathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>71</volume><issue>10</issue><spage>3368</spage><epage>3377</epage><pages>3368-3377</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Development of structural materials for service under extreme conditions is slowed by the lack of high-throughput test protocols. Here, a method that integrates high-throughput nanoindentation mapping with precise temperature control under a vacuum atmosphere is demonstrated. High-entropy alloys (HEAs) may possess the strength and stability required of high-temperature structural materials in next-generation nuclear applications. These alloys, including the compositional variation Al
x
FeCrNiMn (
x
= 0, 0.3, 1) presented in this work, have distinct microstructural morphologies, and nanoindentation mapping reveals the mechanical behavior of the distinct phases as a function of temperature up to 400°C. FeCrNiMn (Al = 0) consists of a face-centered cubic (FCC) matrix with body-centered cubic (BCC) precipitates and exhibits significant softening in both phases at elevated temperature. In contrast, both the FCC phase and FCC–BCC phases present in Al
0.3
FeCrNiMn show approximately 90% retention of the room temperature hardness at 400°C, and AlFeCrNiMn with BCC and B2 structures shows a similar 85% retention of hardness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03714-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1111-4495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2019-10, Vol.71 (10), p.3368-3377 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2490285883 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloy development Body centered cubic lattice Chemistry/Food Science Datasets Earth Sciences Engineering Entropy Environment Face centered cubic lattice Hardness High entropy alloys High temperature Mapping Mechanical properties Morphology Nanoindentation New Developments in Nanomechanical Methods Nuclear reactors Oxidation Phases Physics Precipitates Radiation Room temperature Scanning electron microscopy Statistical analysis Temperature Temperature control Temperature dependence |
title | High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Nanomechanical%20Screening%20of%20Phase-Specific%20and%20Temperature-Dependent%20Hardness%20in%20AlxFeCrNiMn%20High-Entropy%20Alloys&rft.jtitle=JOM%20(1989)&rft.au=Chen,%20Youxing&rft.date=2019-10-01&rft.volume=71&rft.issue=10&rft.spage=3368&rft.epage=3377&rft.pages=3368-3377&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03714-2&rft_dat=%3Cproquest_cross%3E2490285883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490285883&rft_id=info:pmid/&rfr_iscdi=true |