On the relationship between morphology and conductivity in nanosheet networks

It is well-known that the morphology of nanostructured networks is closely linked to network properties. However, controlling and characterizing the morphology of networks of 2D nanosheets has not been explored. In this work, we use networks of liquid-exfoliated graphene nanosheets as a model system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-01, Vol.171, p.306-319
Hauptverfasser: Barwich, Sebastian, Medeiros de Araújo, João, Rafferty, Aran, Gomes da Rocha, Claudia, Ferreira, Mauro S., Coleman, Jonathan N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue
container_start_page 306
container_title Carbon (New York)
container_volume 171
creator Barwich, Sebastian
Medeiros de Araújo, João
Rafferty, Aran
Gomes da Rocha, Claudia
Ferreira, Mauro S.
Coleman, Jonathan N.
description It is well-known that the morphology of nanostructured networks is closely linked to network properties. However, controlling and characterizing the morphology of networks of 2D nanosheets has not been explored. In this work, we use networks of liquid-exfoliated graphene nanosheets as a model system to examine the relationship between network morphology and conductivity in nanosheet networks. We use a combination of heat and pressure to controllably alter the morphology of the network, resulting in the annihilation of large pores (>40 nm) and improved nanosheet alignment within the sample. Such compression can result in a tenfold increase in network conductivity. Analysis shows both in-plane and out-of-plane conductivities to scale with porosity in line with percolation theory. The conductivity anisotropy was ∼3000 at low-porosity and was projected to fall to 1 in the limit of high porosity. Computational studies link the conductivity increase to an increase in network connectivity and a reduction in junction resistance as the porosity is decreased. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490266488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320308630</els_id><sourcerecordid>2490266488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2bfa6a4ddf476958831daebb9bca901210a59562bea8c194a380e345beb6656f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEPA865JNptuLoIUv6DSi55Dkp11s7bJmqRK_71b6tnT8MI87zAPQteUlJRQcTuUVkcTfMkIIyWRJaH1CZrRZlEVVSPpKZoRQppCMFado4uUhinyhvIZel17nHvAETY6u-BT70ZsIP8AeLwNcezDJnzssfYttsG3O5vdt8t77Dz22ofUA2TsJyDEz3SJzjq9SXD1N-fo_fHhbflcrNZPL8v7VWGrhuSCmU4Lzdu24wsh66apaKvBGGmsloQySnQta8EM6MZSyfVEQcVrA0aIWnTVHN0ce8cYvnaQshrCLvrppGJcEiYEn0rniB-3bAwpRejUGN1Wx72iRB3EqUEdxamDOEWkmsRN2N0Rg-mDbwdRJevAW2hdBJtVG9z_Bb-_Q3m_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490266488</pqid></control><display><type>article</type><title>On the relationship between morphology and conductivity in nanosheet networks</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Barwich, Sebastian ; Medeiros de Araújo, João ; Rafferty, Aran ; Gomes da Rocha, Claudia ; Ferreira, Mauro S. ; Coleman, Jonathan N.</creator><creatorcontrib>Barwich, Sebastian ; Medeiros de Araújo, João ; Rafferty, Aran ; Gomes da Rocha, Claudia ; Ferreira, Mauro S. ; Coleman, Jonathan N.</creatorcontrib><description>It is well-known that the morphology of nanostructured networks is closely linked to network properties. However, controlling and characterizing the morphology of networks of 2D nanosheets has not been explored. In this work, we use networks of liquid-exfoliated graphene nanosheets as a model system to examine the relationship between network morphology and conductivity in nanosheet networks. We use a combination of heat and pressure to controllably alter the morphology of the network, resulting in the annihilation of large pores (&gt;40 nm) and improved nanosheet alignment within the sample. Such compression can result in a tenfold increase in network conductivity. Analysis shows both in-plane and out-of-plane conductivities to scale with porosity in line with percolation theory. The conductivity anisotropy was ∼3000 at low-porosity and was projected to fall to 1 in the limit of high porosity. Computational studies link the conductivity increase to an increase in network connectivity and a reduction in junction resistance as the porosity is decreased. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.09.015</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropy ; Conductivity ; Graphene ; Morphology ; Nanosheet ; Nanosheets ; Nanostructure ; Nanostructured materials ; Network ; Networks ; Percolation theory ; Porosity</subject><ispartof>Carbon (New York), 2021-01, Vol.171, p.306-319</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2bfa6a4ddf476958831daebb9bca901210a59562bea8c194a380e345beb6656f3</citedby><cites>FETCH-LOGICAL-c380t-2bfa6a4ddf476958831daebb9bca901210a59562bea8c194a380e345beb6656f3</cites><orcidid>0000-0001-8462-4280 ; 0000-0001-6388-7735 ; 0000-0002-2779-9452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Barwich, Sebastian</creatorcontrib><creatorcontrib>Medeiros de Araújo, João</creatorcontrib><creatorcontrib>Rafferty, Aran</creatorcontrib><creatorcontrib>Gomes da Rocha, Claudia</creatorcontrib><creatorcontrib>Ferreira, Mauro S.</creatorcontrib><creatorcontrib>Coleman, Jonathan N.</creatorcontrib><title>On the relationship between morphology and conductivity in nanosheet networks</title><title>Carbon (New York)</title><description>It is well-known that the morphology of nanostructured networks is closely linked to network properties. However, controlling and characterizing the morphology of networks of 2D nanosheets has not been explored. In this work, we use networks of liquid-exfoliated graphene nanosheets as a model system to examine the relationship between network morphology and conductivity in nanosheet networks. We use a combination of heat and pressure to controllably alter the morphology of the network, resulting in the annihilation of large pores (&gt;40 nm) and improved nanosheet alignment within the sample. Such compression can result in a tenfold increase in network conductivity. Analysis shows both in-plane and out-of-plane conductivities to scale with porosity in line with percolation theory. The conductivity anisotropy was ∼3000 at low-porosity and was projected to fall to 1 in the limit of high porosity. Computational studies link the conductivity increase to an increase in network connectivity and a reduction in junction resistance as the porosity is decreased. [Display omitted]</description><subject>Anisotropy</subject><subject>Conductivity</subject><subject>Graphene</subject><subject>Morphology</subject><subject>Nanosheet</subject><subject>Nanosheets</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Network</subject><subject>Networks</subject><subject>Percolation theory</subject><subject>Porosity</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEPA865JNptuLoIUv6DSi55Dkp11s7bJmqRK_71b6tnT8MI87zAPQteUlJRQcTuUVkcTfMkIIyWRJaH1CZrRZlEVVSPpKZoRQppCMFado4uUhinyhvIZel17nHvAETY6u-BT70ZsIP8AeLwNcezDJnzssfYttsG3O5vdt8t77Dz22ofUA2TsJyDEz3SJzjq9SXD1N-fo_fHhbflcrNZPL8v7VWGrhuSCmU4Lzdu24wsh66apaKvBGGmsloQySnQta8EM6MZSyfVEQcVrA0aIWnTVHN0ce8cYvnaQshrCLvrppGJcEiYEn0rniB-3bAwpRejUGN1Wx72iRB3EqUEdxamDOEWkmsRN2N0Rg-mDbwdRJevAW2hdBJtVG9z_Bb-_Q3m_</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Barwich, Sebastian</creator><creator>Medeiros de Araújo, João</creator><creator>Rafferty, Aran</creator><creator>Gomes da Rocha, Claudia</creator><creator>Ferreira, Mauro S.</creator><creator>Coleman, Jonathan N.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8462-4280</orcidid><orcidid>https://orcid.org/0000-0001-6388-7735</orcidid><orcidid>https://orcid.org/0000-0002-2779-9452</orcidid></search><sort><creationdate>202101</creationdate><title>On the relationship between morphology and conductivity in nanosheet networks</title><author>Barwich, Sebastian ; Medeiros de Araújo, João ; Rafferty, Aran ; Gomes da Rocha, Claudia ; Ferreira, Mauro S. ; Coleman, Jonathan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2bfa6a4ddf476958831daebb9bca901210a59562bea8c194a380e345beb6656f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Conductivity</topic><topic>Graphene</topic><topic>Morphology</topic><topic>Nanosheet</topic><topic>Nanosheets</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Network</topic><topic>Networks</topic><topic>Percolation theory</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barwich, Sebastian</creatorcontrib><creatorcontrib>Medeiros de Araújo, João</creatorcontrib><creatorcontrib>Rafferty, Aran</creatorcontrib><creatorcontrib>Gomes da Rocha, Claudia</creatorcontrib><creatorcontrib>Ferreira, Mauro S.</creatorcontrib><creatorcontrib>Coleman, Jonathan N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barwich, Sebastian</au><au>Medeiros de Araújo, João</au><au>Rafferty, Aran</au><au>Gomes da Rocha, Claudia</au><au>Ferreira, Mauro S.</au><au>Coleman, Jonathan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relationship between morphology and conductivity in nanosheet networks</atitle><jtitle>Carbon (New York)</jtitle><date>2021-01</date><risdate>2021</risdate><volume>171</volume><spage>306</spage><epage>319</epage><pages>306-319</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>It is well-known that the morphology of nanostructured networks is closely linked to network properties. However, controlling and characterizing the morphology of networks of 2D nanosheets has not been explored. In this work, we use networks of liquid-exfoliated graphene nanosheets as a model system to examine the relationship between network morphology and conductivity in nanosheet networks. We use a combination of heat and pressure to controllably alter the morphology of the network, resulting in the annihilation of large pores (&gt;40 nm) and improved nanosheet alignment within the sample. Such compression can result in a tenfold increase in network conductivity. Analysis shows both in-plane and out-of-plane conductivities to scale with porosity in line with percolation theory. The conductivity anisotropy was ∼3000 at low-porosity and was projected to fall to 1 in the limit of high porosity. Computational studies link the conductivity increase to an increase in network connectivity and a reduction in junction resistance as the porosity is decreased. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.09.015</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8462-4280</orcidid><orcidid>https://orcid.org/0000-0001-6388-7735</orcidid><orcidid>https://orcid.org/0000-0002-2779-9452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-01, Vol.171, p.306-319
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2490266488
source ScienceDirect Journals (5 years ago - present)
subjects Anisotropy
Conductivity
Graphene
Morphology
Nanosheet
Nanosheets
Nanostructure
Nanostructured materials
Network
Networks
Percolation theory
Porosity
title On the relationship between morphology and conductivity in nanosheet networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relationship%20between%20morphology%20and%20conductivity%20in%20nanosheet%20networks&rft.jtitle=Carbon%20(New%20York)&rft.au=Barwich,%20Sebastian&rft.date=2021-01&rft.volume=171&rft.spage=306&rft.epage=319&rft.pages=306-319&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.09.015&rft_dat=%3Cproquest_cross%3E2490266488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490266488&rft_id=info:pmid/&rft_els_id=S0008622320308630&rfr_iscdi=true