A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage
Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes hindered Si/MWCNT’s further development. In this study, we combine s...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-01, Vol.171, p.265-275 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | |
container_start_page | 265 |
container_title | Carbon (New York) |
container_volume | 171 |
creator | Xu, Ruhui Wei, Runhong Hu, Xuejun Li, Yin Wang, Li Zhang, Keyu Wang, Yunke Zhang, Hui Liang, Feng Yao, Yaochun |
description | Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes hindered Si/MWCNT’s further development. In this study, we combine silicon nanoparticles with MWCNTs cleverly by utilizing freeze-drying method to solve the problems and enhance silicon-based material’s rate performance. Compared with Si-MWCNTs composite treated by electric blast-drying method, the rate performance of Si-MWCNTs treated by freeze-drying is significantly improved, especially at different current densities. When Si-MWCNTs are encapsulated in FPC (flour-derived porous carbon, FPC), the as-obtained Si-MWCNTs-PVPC-FPC-SC-1 (sucrose-derived carbon, SC) prepared by freeze-drying method delivers a reversible capacity of 1347.5 mAh g−1 at 0.1 A g−1 after cycling at 5 A g−1 and a reversible capacity of 501 mAh g−1 at 1 A g−1 after 500 cycles. Our study demonstrates that the freeze-drying method can solve the problems of easy agglomeration of silicon nanoparticles and MWCNTs as well as improve Si-based anode’s rate performance for LIBs. The synthetic route presented in this paper is low-cost and easy to scale up for silicon-carbon (Si/C) composites with high rate performance and long cycle life.
[Display omitted]
•Freeze-drying method is used to combine Si with MWCNTs to enhance Si-based material’s rate performance.•We analyzed the reason why freeze drying brought beneficial effects on Si-MWCNTs composites.•Precursor treated by freeze-drying method was encapsulated into porous carbon to enhance material’s high rate performance.•The 500th reversible capacity of Si-MWCNTs-PVPC-FPC-SC-1 reaches 501 mAh g−1 at 1 A g−1. |
doi_str_mv | 10.1016/j.carbon.2020.08.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490266379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320308393</els_id><sourcerecordid>2490266379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4743cc306ca72fa22e079efcdc4403ace85bff89d137fcd5fb164f0cf22ae3f83</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pzUrybOBamqeEkFDhT1aLnOunWUxsV2Ef33pApnTqtdzcxqPoRuKckpocWkyY0Oa9_ljDCSE5mTkp-hEZUlz7is6DkaEUJkVjDGL9FVjE2_CknFCK1mOKagE2yOWHc1riFp10KN4Wff6k4n57uIk8dpC9j43d5HlyBib_GHm7yu5m_LiK0PuHVp6w67Ps0HvYFrdGF1G-Hmb47R5-PDcv6cLd6fXuazRWY4FykTpeDGcFIYXTKrGQNSVmBNbYQgXBuQ07W1sqopL_vr1K5pISwxljEN3Eo-RndD7j74rwPEpBp_CF3_UjFREVYUvKx6lRhUJvgYA1i1D26nw1FRok4IVaMGhOqEUBGpeoS97X6wQd_g20FQ0TjoDNQugEmq9u7_gF8jkHzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490266379</pqid></control><display><type>article</type><title>A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Ruhui ; Wei, Runhong ; Hu, Xuejun ; Li, Yin ; Wang, Li ; Zhang, Keyu ; Wang, Yunke ; Zhang, Hui ; Liang, Feng ; Yao, Yaochun</creator><creatorcontrib>Xu, Ruhui ; Wei, Runhong ; Hu, Xuejun ; Li, Yin ; Wang, Li ; Zhang, Keyu ; Wang, Yunke ; Zhang, Hui ; Liang, Feng ; Yao, Yaochun</creatorcontrib><description>Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes hindered Si/MWCNT’s further development. In this study, we combine silicon nanoparticles with MWCNTs cleverly by utilizing freeze-drying method to solve the problems and enhance silicon-based material’s rate performance. Compared with Si-MWCNTs composite treated by electric blast-drying method, the rate performance of Si-MWCNTs treated by freeze-drying is significantly improved, especially at different current densities. When Si-MWCNTs are encapsulated in FPC (flour-derived porous carbon, FPC), the as-obtained Si-MWCNTs-PVPC-FPC-SC-1 (sucrose-derived carbon, SC) prepared by freeze-drying method delivers a reversible capacity of 1347.5 mAh g−1 at 0.1 A g−1 after cycling at 5 A g−1 and a reversible capacity of 501 mAh g−1 at 1 A g−1 after 500 cycles. Our study demonstrates that the freeze-drying method can solve the problems of easy agglomeration of silicon nanoparticles and MWCNTs as well as improve Si-based anode’s rate performance for LIBs. The synthetic route presented in this paper is low-cost and easy to scale up for silicon-carbon (Si/C) composites with high rate performance and long cycle life.
[Display omitted]
•Freeze-drying method is used to combine Si with MWCNTs to enhance Si-based material’s rate performance.•We analyzed the reason why freeze drying brought beneficial effects on Si-MWCNTs composites.•Precursor treated by freeze-drying method was encapsulated into porous carbon to enhance material’s high rate performance.•The 500th reversible capacity of Si-MWCNTs-PVPC-FPC-SC-1 reaches 501 mAh g−1 at 1 A g−1.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.08.073</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Agglomeration ; Anodes ; Batteries ; Composite materials ; Electrode materials ; Freeze drying ; Freeze-drying method ; Lithium ; Lithium ion batteries ; Multi wall carbon nanotubes ; Multi-walled carbon nanotubes ; Nanoparticles ; Nanotubes ; Rate performance ; Rechargeable batteries ; Silicon ; Silicon/carbon anode material</subject><ispartof>Carbon (New York), 2021-01, Vol.171, p.265-275</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4743cc306ca72fa22e079efcdc4403ace85bff89d137fcd5fb164f0cf22ae3f83</citedby><cites>FETCH-LOGICAL-c334t-4743cc306ca72fa22e079efcdc4403ace85bff89d137fcd5fb164f0cf22ae3f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622320308393$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xu, Ruhui</creatorcontrib><creatorcontrib>Wei, Runhong</creatorcontrib><creatorcontrib>Hu, Xuejun</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zhang, Keyu</creatorcontrib><creatorcontrib>Wang, Yunke</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Liang, Feng</creatorcontrib><creatorcontrib>Yao, Yaochun</creatorcontrib><title>A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage</title><title>Carbon (New York)</title><description>Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes hindered Si/MWCNT’s further development. In this study, we combine silicon nanoparticles with MWCNTs cleverly by utilizing freeze-drying method to solve the problems and enhance silicon-based material’s rate performance. Compared with Si-MWCNTs composite treated by electric blast-drying method, the rate performance of Si-MWCNTs treated by freeze-drying is significantly improved, especially at different current densities. When Si-MWCNTs are encapsulated in FPC (flour-derived porous carbon, FPC), the as-obtained Si-MWCNTs-PVPC-FPC-SC-1 (sucrose-derived carbon, SC) prepared by freeze-drying method delivers a reversible capacity of 1347.5 mAh g−1 at 0.1 A g−1 after cycling at 5 A g−1 and a reversible capacity of 501 mAh g−1 at 1 A g−1 after 500 cycles. Our study demonstrates that the freeze-drying method can solve the problems of easy agglomeration of silicon nanoparticles and MWCNTs as well as improve Si-based anode’s rate performance for LIBs. The synthetic route presented in this paper is low-cost and easy to scale up for silicon-carbon (Si/C) composites with high rate performance and long cycle life.
[Display omitted]
•Freeze-drying method is used to combine Si with MWCNTs to enhance Si-based material’s rate performance.•We analyzed the reason why freeze drying brought beneficial effects on Si-MWCNTs composites.•Precursor treated by freeze-drying method was encapsulated into porous carbon to enhance material’s high rate performance.•The 500th reversible capacity of Si-MWCNTs-PVPC-FPC-SC-1 reaches 501 mAh g−1 at 1 A g−1.</description><subject>Agglomeration</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Composite materials</subject><subject>Electrode materials</subject><subject>Freeze drying</subject><subject>Freeze-drying method</subject><subject>Lithium</subject><subject>Lithium ion batteries</subject><subject>Multi wall carbon nanotubes</subject><subject>Multi-walled carbon nanotubes</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Rate performance</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Silicon/carbon anode material</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pzUrybOBamqeEkFDhT1aLnOunWUxsV2Ef33pApnTqtdzcxqPoRuKckpocWkyY0Oa9_ljDCSE5mTkp-hEZUlz7is6DkaEUJkVjDGL9FVjE2_CknFCK1mOKagE2yOWHc1riFp10KN4Wff6k4n57uIk8dpC9j43d5HlyBib_GHm7yu5m_LiK0PuHVp6w67Ps0HvYFrdGF1G-Hmb47R5-PDcv6cLd6fXuazRWY4FykTpeDGcFIYXTKrGQNSVmBNbYQgXBuQ07W1sqopL_vr1K5pISwxljEN3Eo-RndD7j74rwPEpBp_CF3_UjFREVYUvKx6lRhUJvgYA1i1D26nw1FRok4IVaMGhOqEUBGpeoS97X6wQd_g20FQ0TjoDNQugEmq9u7_gF8jkHzM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Xu, Ruhui</creator><creator>Wei, Runhong</creator><creator>Hu, Xuejun</creator><creator>Li, Yin</creator><creator>Wang, Li</creator><creator>Zhang, Keyu</creator><creator>Wang, Yunke</creator><creator>Zhang, Hui</creator><creator>Liang, Feng</creator><creator>Yao, Yaochun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202101</creationdate><title>A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage</title><author>Xu, Ruhui ; Wei, Runhong ; Hu, Xuejun ; Li, Yin ; Wang, Li ; Zhang, Keyu ; Wang, Yunke ; Zhang, Hui ; Liang, Feng ; Yao, Yaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4743cc306ca72fa22e079efcdc4403ace85bff89d137fcd5fb164f0cf22ae3f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Composite materials</topic><topic>Electrode materials</topic><topic>Freeze drying</topic><topic>Freeze-drying method</topic><topic>Lithium</topic><topic>Lithium ion batteries</topic><topic>Multi wall carbon nanotubes</topic><topic>Multi-walled carbon nanotubes</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Rate performance</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Silicon/carbon anode material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ruhui</creatorcontrib><creatorcontrib>Wei, Runhong</creatorcontrib><creatorcontrib>Hu, Xuejun</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zhang, Keyu</creatorcontrib><creatorcontrib>Wang, Yunke</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Liang, Feng</creatorcontrib><creatorcontrib>Yao, Yaochun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ruhui</au><au>Wei, Runhong</au><au>Hu, Xuejun</au><au>Li, Yin</au><au>Wang, Li</au><au>Zhang, Keyu</au><au>Wang, Yunke</au><au>Zhang, Hui</au><au>Liang, Feng</au><au>Yao, Yaochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage</atitle><jtitle>Carbon (New York)</jtitle><date>2021-01</date><risdate>2021</risdate><volume>171</volume><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Nano-Si/MWCNTs composite was a representative solution to improve Si-based anode material’s rate performance in lithium-ion batteries (LIBs). However, the problems of easy agglomeration of silicon nanoparticles and carbon nanotubes hindered Si/MWCNT’s further development. In this study, we combine silicon nanoparticles with MWCNTs cleverly by utilizing freeze-drying method to solve the problems and enhance silicon-based material’s rate performance. Compared with Si-MWCNTs composite treated by electric blast-drying method, the rate performance of Si-MWCNTs treated by freeze-drying is significantly improved, especially at different current densities. When Si-MWCNTs are encapsulated in FPC (flour-derived porous carbon, FPC), the as-obtained Si-MWCNTs-PVPC-FPC-SC-1 (sucrose-derived carbon, SC) prepared by freeze-drying method delivers a reversible capacity of 1347.5 mAh g−1 at 0.1 A g−1 after cycling at 5 A g−1 and a reversible capacity of 501 mAh g−1 at 1 A g−1 after 500 cycles. Our study demonstrates that the freeze-drying method can solve the problems of easy agglomeration of silicon nanoparticles and MWCNTs as well as improve Si-based anode’s rate performance for LIBs. The synthetic route presented in this paper is low-cost and easy to scale up for silicon-carbon (Si/C) composites with high rate performance and long cycle life.
[Display omitted]
•Freeze-drying method is used to combine Si with MWCNTs to enhance Si-based material’s rate performance.•We analyzed the reason why freeze drying brought beneficial effects on Si-MWCNTs composites.•Precursor treated by freeze-drying method was encapsulated into porous carbon to enhance material’s high rate performance.•The 500th reversible capacity of Si-MWCNTs-PVPC-FPC-SC-1 reaches 501 mAh g−1 at 1 A g−1.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.08.073</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-01, Vol.171, p.265-275 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2490266379 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Agglomeration Anodes Batteries Composite materials Electrode materials Freeze drying Freeze-drying method Lithium Lithium ion batteries Multi wall carbon nanotubes Multi-walled carbon nanotubes Nanoparticles Nanotubes Rate performance Rechargeable batteries Silicon Silicon/carbon anode material |
title | A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strategy%20and%20detailed%20explanations%20to%20the%20composites%20of%20Si/MWCNTs%20for%20lithium%20storage&rft.jtitle=Carbon%20(New%20York)&rft.au=Xu,%20Ruhui&rft.date=2021-01&rft.volume=171&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.08.073&rft_dat=%3Cproquest_cross%3E2490266379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490266379&rft_id=info:pmid/&rft_els_id=S0008622320308393&rfr_iscdi=true |