Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites

Tin mono‐selenide (SnSe) is one of the most promising thermoelectric materials; however, it experiences difficulty in controlling the carrier polarity, which is inevitable for realizing p‐n homojunction devices. Herein, double switching of charge polarity in (Sn1−xSbx)Se by varying x is reported; pu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-02, Vol.31 (8), p.n/a
Hauptverfasser: Yamamoto, Chihiro, He, Xinyi, Katase, Takayoshi, Ide, Keisuke, Goto, Yosuke, Mizuguchi, Yoshikazu, Samizo, Akane, Minohara, Makoto, Ueda, Shigenori, Hiramatsu, Hidenori, Hosono, Hideo, Kamiya, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced functional materials
container_volume 31
creator Yamamoto, Chihiro
He, Xinyi
Katase, Takayoshi
Ide, Keisuke
Goto, Yosuke
Mizuguchi, Yoshikazu
Samizo, Akane
Minohara, Makoto
Ueda, Shigenori
Hiramatsu, Hidenori
Hosono, Hideo
Kamiya, Toshio
description Tin mono‐selenide (SnSe) is one of the most promising thermoelectric materials; however, it experiences difficulty in controlling the carrier polarity, which is inevitable for realizing p‐n homojunction devices. Herein, double switching of charge polarity in (Sn1−xSbx)Se by varying x is reported; pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se switches to n‐type conduction for 0.005 < x < 0.05, and then re‐switches to p‐type conduction for x > 0.05. The major Sb substitution site switches from the Se (SbSe) to Sn site (SbSn) with increasing x. SbSn (Sb3+ at Sn2+) works as a donor, but SbSe (Sb3− at Se2−) does not produce a hole because of the Sb–Sb dimer formation. The mechanism of double polarity switching is explained by native p‐type conduction in pure SnSe due to Sn‐vacancy formation, whereas (Sn1−xSbx)Se exhibits n‐type behavior due to conduction through the SbSe impurity band formed above the valence band maximum, and finally re‐switches to weak p‐type, where the Fermi level approaches the midgap level between the SbSe band and conduction band minimum. Clarification of the Sb doping mechanism will provide a crucial guide for developing more sophisticated doping routes for SnSe and high‐performance energy‐related devices. Double charge polarity switching is observed in Sb‐doped SnSe with switchable substitution sites. Pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se is switched to n‐type for 0.005 < x  0.05, where the major Sb substitution site changes from Se (SbSe) to Sn site (SbSn) with increasing x.
doi_str_mv 10.1002/adfm.202008092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489976472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489976472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-2c5142c04fed5dd4433abe0960ade3206d741dcac5d61114edb3b21a3a0ebf1f3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFavngOeU2d2t0lzLK1VoaIQFW_LZnfTbkmTuptQcvMRfEafxJSWevQ0P8z3zcBPyDXCAAHordT5ekCBAowgoSekhxFGIQM6Oj1m_DgnF96vADCOGe-R92nVZIUJJkvpFiZ4qQrpbN0G6dbWamnLRWDLIM1-vr6n1cboIC1TE3S75YGQOzltMl_buqlt1cG2Nv6SnOWy8ObqMPvkbXb3OnkI58_3j5PxPFQMYxpSNUROFfDc6KHWnDMmMwNJBFIbRiHSMUetpBrqCBG50RnLKEomwWQ55qxPbvZ3N676bIyvxapqXNm9FJSPkiSOeEw7arCnlKu8dyYXG2fX0rUCQey6E7vuxLG7Tkj2wtYWpv2HFuPp7OnP_QW2jnRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489976472</pqid></control><display><type>article</type><title>Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yamamoto, Chihiro ; He, Xinyi ; Katase, Takayoshi ; Ide, Keisuke ; Goto, Yosuke ; Mizuguchi, Yoshikazu ; Samizo, Akane ; Minohara, Makoto ; Ueda, Shigenori ; Hiramatsu, Hidenori ; Hosono, Hideo ; Kamiya, Toshio</creator><creatorcontrib>Yamamoto, Chihiro ; He, Xinyi ; Katase, Takayoshi ; Ide, Keisuke ; Goto, Yosuke ; Mizuguchi, Yoshikazu ; Samizo, Akane ; Minohara, Makoto ; Ueda, Shigenori ; Hiramatsu, Hidenori ; Hosono, Hideo ; Kamiya, Toshio</creatorcontrib><description>Tin mono‐selenide (SnSe) is one of the most promising thermoelectric materials; however, it experiences difficulty in controlling the carrier polarity, which is inevitable for realizing p‐n homojunction devices. Herein, double switching of charge polarity in (Sn1−xSbx)Se by varying x is reported; pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se switches to n‐type conduction for 0.005 &lt; x &lt; 0.05, and then re‐switches to p‐type conduction for x &gt; 0.05. The major Sb substitution site switches from the Se (SbSe) to Sn site (SbSn) with increasing x. SbSn (Sb3+ at Sn2+) works as a donor, but SbSe (Sb3− at Se2−) does not produce a hole because of the Sb–Sb dimer formation. The mechanism of double polarity switching is explained by native p‐type conduction in pure SnSe due to Sn‐vacancy formation, whereas (Sn1−xSbx)Se exhibits n‐type behavior due to conduction through the SbSe impurity band formed above the valence band maximum, and finally re‐switches to weak p‐type, where the Fermi level approaches the midgap level between the SbSe band and conduction band minimum. Clarification of the Sb doping mechanism will provide a crucial guide for developing more sophisticated doping routes for SnSe and high‐performance energy‐related devices. Double charge polarity switching is observed in Sb‐doped SnSe with switchable substitution sites. Pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se is switched to n‐type for 0.005 &lt; x &lt; 0.05, and then re‐switched to p‐type for x &gt; 0.05, where the major Sb substitution site changes from Se (SbSe) to Sn site (SbSn) with increasing x.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202008092</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antimony ; carrier doping ; Conduction bands ; defect ; Dimers ; Doping ; Homojunctions ; Materials science ; Selenium ; semiconductors ; Substitutes ; Switches ; Switching (polarity) ; Thermoelectric materials ; Tin ; tin mono‐selenide ; Tin selenide ; Valence band</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (8), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-2c5142c04fed5dd4433abe0960ade3206d741dcac5d61114edb3b21a3a0ebf1f3</citedby><cites>FETCH-LOGICAL-c3172-2c5142c04fed5dd4433abe0960ade3206d741dcac5d61114edb3b21a3a0ebf1f3</cites><orcidid>0000-0002-2593-7487 ; 0000-0002-8358-240X ; 0000-0001-9260-6728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202008092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202008092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yamamoto, Chihiro</creatorcontrib><creatorcontrib>He, Xinyi</creatorcontrib><creatorcontrib>Katase, Takayoshi</creatorcontrib><creatorcontrib>Ide, Keisuke</creatorcontrib><creatorcontrib>Goto, Yosuke</creatorcontrib><creatorcontrib>Mizuguchi, Yoshikazu</creatorcontrib><creatorcontrib>Samizo, Akane</creatorcontrib><creatorcontrib>Minohara, Makoto</creatorcontrib><creatorcontrib>Ueda, Shigenori</creatorcontrib><creatorcontrib>Hiramatsu, Hidenori</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><creatorcontrib>Kamiya, Toshio</creatorcontrib><title>Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites</title><title>Advanced functional materials</title><description>Tin mono‐selenide (SnSe) is one of the most promising thermoelectric materials; however, it experiences difficulty in controlling the carrier polarity, which is inevitable for realizing p‐n homojunction devices. Herein, double switching of charge polarity in (Sn1−xSbx)Se by varying x is reported; pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se switches to n‐type conduction for 0.005 &lt; x &lt; 0.05, and then re‐switches to p‐type conduction for x &gt; 0.05. The major Sb substitution site switches from the Se (SbSe) to Sn site (SbSn) with increasing x. SbSn (Sb3+ at Sn2+) works as a donor, but SbSe (Sb3− at Se2−) does not produce a hole because of the Sb–Sb dimer formation. The mechanism of double polarity switching is explained by native p‐type conduction in pure SnSe due to Sn‐vacancy formation, whereas (Sn1−xSbx)Se exhibits n‐type behavior due to conduction through the SbSe impurity band formed above the valence band maximum, and finally re‐switches to weak p‐type, where the Fermi level approaches the midgap level between the SbSe band and conduction band minimum. Clarification of the Sb doping mechanism will provide a crucial guide for developing more sophisticated doping routes for SnSe and high‐performance energy‐related devices. Double charge polarity switching is observed in Sb‐doped SnSe with switchable substitution sites. Pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se is switched to n‐type for 0.005 &lt; x &lt; 0.05, and then re‐switched to p‐type for x &gt; 0.05, where the major Sb substitution site changes from Se (SbSe) to Sn site (SbSn) with increasing x.</description><subject>Antimony</subject><subject>carrier doping</subject><subject>Conduction bands</subject><subject>defect</subject><subject>Dimers</subject><subject>Doping</subject><subject>Homojunctions</subject><subject>Materials science</subject><subject>Selenium</subject><subject>semiconductors</subject><subject>Substitutes</subject><subject>Switches</subject><subject>Switching (polarity)</subject><subject>Thermoelectric materials</subject><subject>Tin</subject><subject>tin mono‐selenide</subject><subject>Tin selenide</subject><subject>Valence band</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFavngOeU2d2t0lzLK1VoaIQFW_LZnfTbkmTuptQcvMRfEafxJSWevQ0P8z3zcBPyDXCAAHordT5ekCBAowgoSekhxFGIQM6Oj1m_DgnF96vADCOGe-R92nVZIUJJkvpFiZ4qQrpbN0G6dbWamnLRWDLIM1-vr6n1cboIC1TE3S75YGQOzltMl_buqlt1cG2Nv6SnOWy8ObqMPvkbXb3OnkI58_3j5PxPFQMYxpSNUROFfDc6KHWnDMmMwNJBFIbRiHSMUetpBrqCBG50RnLKEomwWQ55qxPbvZ3N676bIyvxapqXNm9FJSPkiSOeEw7arCnlKu8dyYXG2fX0rUCQey6E7vuxLG7Tkj2wtYWpv2HFuPp7OnP_QW2jnRO</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Yamamoto, Chihiro</creator><creator>He, Xinyi</creator><creator>Katase, Takayoshi</creator><creator>Ide, Keisuke</creator><creator>Goto, Yosuke</creator><creator>Mizuguchi, Yoshikazu</creator><creator>Samizo, Akane</creator><creator>Minohara, Makoto</creator><creator>Ueda, Shigenori</creator><creator>Hiramatsu, Hidenori</creator><creator>Hosono, Hideo</creator><creator>Kamiya, Toshio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2593-7487</orcidid><orcidid>https://orcid.org/0000-0002-8358-240X</orcidid><orcidid>https://orcid.org/0000-0001-9260-6728</orcidid></search><sort><creationdate>20210201</creationdate><title>Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites</title><author>Yamamoto, Chihiro ; He, Xinyi ; Katase, Takayoshi ; Ide, Keisuke ; Goto, Yosuke ; Mizuguchi, Yoshikazu ; Samizo, Akane ; Minohara, Makoto ; Ueda, Shigenori ; Hiramatsu, Hidenori ; Hosono, Hideo ; Kamiya, Toshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-2c5142c04fed5dd4433abe0960ade3206d741dcac5d61114edb3b21a3a0ebf1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antimony</topic><topic>carrier doping</topic><topic>Conduction bands</topic><topic>defect</topic><topic>Dimers</topic><topic>Doping</topic><topic>Homojunctions</topic><topic>Materials science</topic><topic>Selenium</topic><topic>semiconductors</topic><topic>Substitutes</topic><topic>Switches</topic><topic>Switching (polarity)</topic><topic>Thermoelectric materials</topic><topic>Tin</topic><topic>tin mono‐selenide</topic><topic>Tin selenide</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Chihiro</creatorcontrib><creatorcontrib>He, Xinyi</creatorcontrib><creatorcontrib>Katase, Takayoshi</creatorcontrib><creatorcontrib>Ide, Keisuke</creatorcontrib><creatorcontrib>Goto, Yosuke</creatorcontrib><creatorcontrib>Mizuguchi, Yoshikazu</creatorcontrib><creatorcontrib>Samizo, Akane</creatorcontrib><creatorcontrib>Minohara, Makoto</creatorcontrib><creatorcontrib>Ueda, Shigenori</creatorcontrib><creatorcontrib>Hiramatsu, Hidenori</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><creatorcontrib>Kamiya, Toshio</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Chihiro</au><au>He, Xinyi</au><au>Katase, Takayoshi</au><au>Ide, Keisuke</au><au>Goto, Yosuke</au><au>Mizuguchi, Yoshikazu</au><au>Samizo, Akane</au><au>Minohara, Makoto</au><au>Ueda, Shigenori</au><au>Hiramatsu, Hidenori</au><au>Hosono, Hideo</au><au>Kamiya, Toshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Tin mono‐selenide (SnSe) is one of the most promising thermoelectric materials; however, it experiences difficulty in controlling the carrier polarity, which is inevitable for realizing p‐n homojunction devices. Herein, double switching of charge polarity in (Sn1−xSbx)Se by varying x is reported; pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se switches to n‐type conduction for 0.005 &lt; x &lt; 0.05, and then re‐switches to p‐type conduction for x &gt; 0.05. The major Sb substitution site switches from the Se (SbSe) to Sn site (SbSn) with increasing x. SbSn (Sb3+ at Sn2+) works as a donor, but SbSe (Sb3− at Se2−) does not produce a hole because of the Sb–Sb dimer formation. The mechanism of double polarity switching is explained by native p‐type conduction in pure SnSe due to Sn‐vacancy formation, whereas (Sn1−xSbx)Se exhibits n‐type behavior due to conduction through the SbSe impurity band formed above the valence band maximum, and finally re‐switches to weak p‐type, where the Fermi level approaches the midgap level between the SbSe band and conduction band minimum. Clarification of the Sb doping mechanism will provide a crucial guide for developing more sophisticated doping routes for SnSe and high‐performance energy‐related devices. Double charge polarity switching is observed in Sb‐doped SnSe with switchable substitution sites. Pure SnSe shows p‐type conduction, whereas the polarity of (Sn1−xSbx)Se is switched to n‐type for 0.005 &lt; x &lt; 0.05, and then re‐switched to p‐type for x &gt; 0.05, where the major Sb substitution site changes from Se (SbSe) to Sn site (SbSn) with increasing x.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202008092</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2593-7487</orcidid><orcidid>https://orcid.org/0000-0002-8358-240X</orcidid><orcidid>https://orcid.org/0000-0001-9260-6728</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-02, Vol.31 (8), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2489976472
source Wiley Online Library Journals Frontfile Complete
subjects Antimony
carrier doping
Conduction bands
defect
Dimers
Doping
Homojunctions
Materials science
Selenium
semiconductors
Substitutes
Switches
Switching (polarity)
Thermoelectric materials
Tin
tin mono‐selenide
Tin selenide
Valence band
title Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Charge%20Polarity%20Switching%20in%20Sb%E2%80%90Doped%20SnSe%20with%20Switchable%20Substitution%20Sites&rft.jtitle=Advanced%20functional%20materials&rft.au=Yamamoto,%20Chihiro&rft.date=2021-02-01&rft.volume=31&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202008092&rft_dat=%3Cproquest_cross%3E2489976472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489976472&rft_id=info:pmid/&rfr_iscdi=true