A look into homomorphisms between uniform algebras over a Hilbert space

We study the vector-valued spectrum \(\mathcal{M}_{u,\infty}(B_{\ell_2},B_{\ell_2})\) which is the set of nonzero algebra homomorphisms from \(\mathcal{A}_u(B_{\ell_2})\) (the algebra of uniformly continuous holomorphic functions on \(B_{\ell_2}\)) to \(\mathcal {H}^\infty(B_{\ell_2})\) (the algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Dimant, Verónica, Singer, Joaquín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dimant, Verónica
Singer, Joaquín
description We study the vector-valued spectrum \(\mathcal{M}_{u,\infty}(B_{\ell_2},B_{\ell_2})\) which is the set of nonzero algebra homomorphisms from \(\mathcal{A}_u(B_{\ell_2})\) (the algebra of uniformly continuous holomorphic functions on \(B_{\ell_2}\)) to \(\mathcal {H}^\infty(B_{\ell_2})\) (the algebra of bounded holomorphic functions on \(B_{\ell_2}\)). This set is naturally projected onto the closed unit ball of \(\mathcal {H}^\infty(B_{\ell_2}, \ell_2)\) giving rise to an associated fibering. Extending the classical notion of cluster sets introduced by I. J. Schark (1961) to the vector-valued spectrum we define vector-valued cluster sets. The aim of the article is to look at the relationship between fibers and cluster sets obtaining results regarding the existence of analytic balls into these sets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2489934164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489934164</sourcerecordid><originalsourceid>FETCH-proquest_journals_24899341643</originalsourceid><addsrcrecordid>eNqNikEOgjAQABsTE4nyh008k0BbEI7GqDzAOylmkWLpYlv0-3LwAWYOc5hZsYgLkSWl5HzDYu-HNE15ceB5LiJ2PYIheoK2gaCnccFNvfajhxbDB9HCbHVHbgRlHtg65YHe6EBBrU2LLoCf1B13bN0p4zH-ecv2l_PtVCeTo9eMPjQDzc4uqeGyrCohs0KK_64vFHA70w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489934164</pqid></control><display><type>article</type><title>A look into homomorphisms between uniform algebras over a Hilbert space</title><source>Free E- Journals</source><creator>Dimant, Verónica ; Singer, Joaquín</creator><creatorcontrib>Dimant, Verónica ; Singer, Joaquín</creatorcontrib><description>We study the vector-valued spectrum \(\mathcal{M}_{u,\infty}(B_{\ell_2},B_{\ell_2})\) which is the set of nonzero algebra homomorphisms from \(\mathcal{A}_u(B_{\ell_2})\) (the algebra of uniformly continuous holomorphic functions on \(B_{\ell_2}\)) to \(\mathcal {H}^\infty(B_{\ell_2})\) (the algebra of bounded holomorphic functions on \(B_{\ell_2}\)). This set is naturally projected onto the closed unit ball of \(\mathcal {H}^\infty(B_{\ell_2}, \ell_2)\) giving rise to an associated fibering. Extending the classical notion of cluster sets introduced by I. J. Schark (1961) to the vector-valued spectrum we define vector-valued cluster sets. The aim of the article is to look at the relationship between fibers and cluster sets obtaining results regarding the existence of analytic balls into these sets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Analytic functions ; Clusters ; Continuity (mathematics) ; Hilbert space ; Homomorphisms ; Mathematical analysis</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dimant, Verónica</creatorcontrib><creatorcontrib>Singer, Joaquín</creatorcontrib><title>A look into homomorphisms between uniform algebras over a Hilbert space</title><title>arXiv.org</title><description>We study the vector-valued spectrum \(\mathcal{M}_{u,\infty}(B_{\ell_2},B_{\ell_2})\) which is the set of nonzero algebra homomorphisms from \(\mathcal{A}_u(B_{\ell_2})\) (the algebra of uniformly continuous holomorphic functions on \(B_{\ell_2}\)) to \(\mathcal {H}^\infty(B_{\ell_2})\) (the algebra of bounded holomorphic functions on \(B_{\ell_2}\)). This set is naturally projected onto the closed unit ball of \(\mathcal {H}^\infty(B_{\ell_2}, \ell_2)\) giving rise to an associated fibering. Extending the classical notion of cluster sets introduced by I. J. Schark (1961) to the vector-valued spectrum we define vector-valued cluster sets. The aim of the article is to look at the relationship between fibers and cluster sets obtaining results regarding the existence of analytic balls into these sets.</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>Clusters</subject><subject>Continuity (mathematics)</subject><subject>Hilbert space</subject><subject>Homomorphisms</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEOgjAQABsTE4nyh008k0BbEI7GqDzAOylmkWLpYlv0-3LwAWYOc5hZsYgLkSWl5HzDYu-HNE15ceB5LiJ2PYIheoK2gaCnccFNvfajhxbDB9HCbHVHbgRlHtg65YHe6EBBrU2LLoCf1B13bN0p4zH-ecv2l_PtVCeTo9eMPjQDzc4uqeGyrCohs0KK_64vFHA70w</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Dimant, Verónica</creator><creator>Singer, Joaquín</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210212</creationdate><title>A look into homomorphisms between uniform algebras over a Hilbert space</title><author>Dimant, Verónica ; Singer, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24899341643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>Clusters</topic><topic>Continuity (mathematics)</topic><topic>Hilbert space</topic><topic>Homomorphisms</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Dimant, Verónica</creatorcontrib><creatorcontrib>Singer, Joaquín</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimant, Verónica</au><au>Singer, Joaquín</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A look into homomorphisms between uniform algebras over a Hilbert space</atitle><jtitle>arXiv.org</jtitle><date>2021-02-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the vector-valued spectrum \(\mathcal{M}_{u,\infty}(B_{\ell_2},B_{\ell_2})\) which is the set of nonzero algebra homomorphisms from \(\mathcal{A}_u(B_{\ell_2})\) (the algebra of uniformly continuous holomorphic functions on \(B_{\ell_2}\)) to \(\mathcal {H}^\infty(B_{\ell_2})\) (the algebra of bounded holomorphic functions on \(B_{\ell_2}\)). This set is naturally projected onto the closed unit ball of \(\mathcal {H}^\infty(B_{\ell_2}, \ell_2)\) giving rise to an associated fibering. Extending the classical notion of cluster sets introduced by I. J. Schark (1961) to the vector-valued spectrum we define vector-valued cluster sets. The aim of the article is to look at the relationship between fibers and cluster sets obtaining results regarding the existence of analytic balls into these sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2489934164
source Free E- Journals
subjects Algebra
Analytic functions
Clusters
Continuity (mathematics)
Hilbert space
Homomorphisms
Mathematical analysis
title A look into homomorphisms between uniform algebras over a Hilbert space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20look%20into%20homomorphisms%20between%20uniform%20algebras%20over%20a%20Hilbert%20space&rft.jtitle=arXiv.org&rft.au=Dimant,%20Ver%C3%B3nica&rft.date=2021-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2489934164%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489934164&rft_id=info:pmid/&rfr_iscdi=true