The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method

The spin coating method was employed to fabricate Yb-doped ZnO thin films at 0, 3, 5, 7, and 9 at.% over a glass substrate at low temperature. X-ray diffraction analysis revealed that the hexagonal wurtzite structure was retained even at high doping contents. With the incorporation of Yb +3 ions, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021, Vol.32 (1), p.347-359
Hauptverfasser: López-Mena, Edgar R., Ceballos-Sanchez, O., Hooper, T. J. N., Sanchez-Ante, Gildardo, Rodríguez-Muñoz, Mateo, Renteria-Salcedo, Jose A., Elías-Zuñiga, Alex, Sanchez-Martinez, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 1
container_start_page 347
container_title Journal of materials science. Materials in electronics
container_volume 32
creator López-Mena, Edgar R.
Ceballos-Sanchez, O.
Hooper, T. J. N.
Sanchez-Ante, Gildardo
Rodríguez-Muñoz, Mateo
Renteria-Salcedo, Jose A.
Elías-Zuñiga, Alex
Sanchez-Martinez, A.
description The spin coating method was employed to fabricate Yb-doped ZnO thin films at 0, 3, 5, 7, and 9 at.% over a glass substrate at low temperature. X-ray diffraction analysis revealed that the hexagonal wurtzite structure was retained even at high doping contents. With the incorporation of Yb +3 ions, a slight decrease in the lattice parameters and crystallite size was observed as the ytterbium content increased. X-ray photoelectron spectroscopy confirmed the presence of ytterbium in the doped ZnO films, and the oxidation state of ytterbium was 3+ for all the samples. Morphological studies revealed a surface microstructure formed by micro islands, which tended to be denser as the ytterbium content increased. Optical transmittance was observed at approximately 75–85%, a blueshift was observed, and consequently, an increase in the bandgap, which varies from 3.0 to 3.2 eV, was observed. The refractive index and extinction coefficient decreased as the ytterbium dopant concentration increased. The photoluminescence results exhibited a strong ultraviolet emission, allowing the use of these thin films in optoelectronic applications.
doi_str_mv 10.1007/s10854-020-04785-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489908865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489908865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e73746461e53c783a2f935d66483f89279eefb23f0497be05d2d591efd6492d43</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXAdTTPSbKU4gsK3SioCGEeN-2UdjImqeK_d-oI7lzdzTnfhYPQOaOXjFJ9lRg1ShLKKaFSG0X0AZowpQWRhj8fogm1ShOpOD9GJymtKaWFFGaC3h5XgMF7qDMOHr9UuAl92y1x6PBrt8B51XbYt5ttwqHKZdtBgz_aEpd4Ez5Jhm0Pscy7CDgNGq5Dmff2FvIqNKfoyJebBGe_d4qebm8eZ_dkvrh7mF3PSS2YzQS00LKQBQMlam1Eyb0VqikKaYQ3lmsL4CsuPJVWV0BVwxtlGfimkJY3UkzRxbjbx_C-g5TdOuxiN7x0XBprqTGFGig-UnUMKUXwro_ttoxfjlG3r-jGim6o6H4qOj1IYpTSAHdLiH_T_1jfHJ90Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489908865</pqid></control><display><type>article</type><title>The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method</title><source>SpringerLink Journals (MCLS)</source><creator>López-Mena, Edgar R. ; Ceballos-Sanchez, O. ; Hooper, T. J. N. ; Sanchez-Ante, Gildardo ; Rodríguez-Muñoz, Mateo ; Renteria-Salcedo, Jose A. ; Elías-Zuñiga, Alex ; Sanchez-Martinez, A.</creator><creatorcontrib>López-Mena, Edgar R. ; Ceballos-Sanchez, O. ; Hooper, T. J. N. ; Sanchez-Ante, Gildardo ; Rodríguez-Muñoz, Mateo ; Renteria-Salcedo, Jose A. ; Elías-Zuñiga, Alex ; Sanchez-Martinez, A.</creatorcontrib><description>The spin coating method was employed to fabricate Yb-doped ZnO thin films at 0, 3, 5, 7, and 9 at.% over a glass substrate at low temperature. X-ray diffraction analysis revealed that the hexagonal wurtzite structure was retained even at high doping contents. With the incorporation of Yb +3 ions, a slight decrease in the lattice parameters and crystallite size was observed as the ytterbium content increased. X-ray photoelectron spectroscopy confirmed the presence of ytterbium in the doped ZnO films, and the oxidation state of ytterbium was 3+ for all the samples. Morphological studies revealed a surface microstructure formed by micro islands, which tended to be denser as the ytterbium content increased. Optical transmittance was observed at approximately 75–85%, a blueshift was observed, and consequently, an increase in the bandgap, which varies from 3.0 to 3.2 eV, was observed. The refractive index and extinction coefficient decreased as the ytterbium dopant concentration increased. The photoluminescence results exhibited a strong ultraviolet emission, allowing the use of these thin films in optoelectronic applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04785-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Doping ; Glass substrates ; Lattice parameters ; Low temperature ; Materials Science ; Optical and Electronic Materials ; Optoelectronics ; Oxidation ; Photoelectrons ; Photoluminescence ; Refractivity ; Spin coating ; Thin films ; Ultraviolet emission ; Valence ; Wurtzite ; Ytterbium ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021, Vol.32 (1), p.347-359</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e73746461e53c783a2f935d66483f89279eefb23f0497be05d2d591efd6492d43</citedby><cites>FETCH-LOGICAL-c319t-e73746461e53c783a2f935d66483f89279eefb23f0497be05d2d591efd6492d43</cites><orcidid>0000-0002-1681-2885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04785-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04785-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>López-Mena, Edgar R.</creatorcontrib><creatorcontrib>Ceballos-Sanchez, O.</creatorcontrib><creatorcontrib>Hooper, T. J. N.</creatorcontrib><creatorcontrib>Sanchez-Ante, Gildardo</creatorcontrib><creatorcontrib>Rodríguez-Muñoz, Mateo</creatorcontrib><creatorcontrib>Renteria-Salcedo, Jose A.</creatorcontrib><creatorcontrib>Elías-Zuñiga, Alex</creatorcontrib><creatorcontrib>Sanchez-Martinez, A.</creatorcontrib><title>The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The spin coating method was employed to fabricate Yb-doped ZnO thin films at 0, 3, 5, 7, and 9 at.% over a glass substrate at low temperature. X-ray diffraction analysis revealed that the hexagonal wurtzite structure was retained even at high doping contents. With the incorporation of Yb +3 ions, a slight decrease in the lattice parameters and crystallite size was observed as the ytterbium content increased. X-ray photoelectron spectroscopy confirmed the presence of ytterbium in the doped ZnO films, and the oxidation state of ytterbium was 3+ for all the samples. Morphological studies revealed a surface microstructure formed by micro islands, which tended to be denser as the ytterbium content increased. Optical transmittance was observed at approximately 75–85%, a blueshift was observed, and consequently, an increase in the bandgap, which varies from 3.0 to 3.2 eV, was observed. The refractive index and extinction coefficient decreased as the ytterbium dopant concentration increased. The photoluminescence results exhibited a strong ultraviolet emission, allowing the use of these thin films in optoelectronic applications.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Doping</subject><subject>Glass substrates</subject><subject>Lattice parameters</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Oxidation</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Refractivity</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Ultraviolet emission</subject><subject>Valence</subject><subject>Wurtzite</subject><subject>Ytterbium</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEURoMoWKt_wFXAdTTPSbKU4gsK3SioCGEeN-2UdjImqeK_d-oI7lzdzTnfhYPQOaOXjFJ9lRg1ShLKKaFSG0X0AZowpQWRhj8fogm1ShOpOD9GJymtKaWFFGaC3h5XgMF7qDMOHr9UuAl92y1x6PBrt8B51XbYt5ttwqHKZdtBgz_aEpd4Ez5Jhm0Pscy7CDgNGq5Dmff2FvIqNKfoyJebBGe_d4qebm8eZ_dkvrh7mF3PSS2YzQS00LKQBQMlam1Eyb0VqikKaYQ3lmsL4CsuPJVWV0BVwxtlGfimkJY3UkzRxbjbx_C-g5TdOuxiN7x0XBprqTGFGig-UnUMKUXwro_ttoxfjlG3r-jGim6o6H4qOj1IYpTSAHdLiH_T_1jfHJ90Kg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>López-Mena, Edgar R.</creator><creator>Ceballos-Sanchez, O.</creator><creator>Hooper, T. J. N.</creator><creator>Sanchez-Ante, Gildardo</creator><creator>Rodríguez-Muñoz, Mateo</creator><creator>Renteria-Salcedo, Jose A.</creator><creator>Elías-Zuñiga, Alex</creator><creator>Sanchez-Martinez, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1681-2885</orcidid></search><sort><creationdate>2021</creationdate><title>The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method</title><author>López-Mena, Edgar R. ; Ceballos-Sanchez, O. ; Hooper, T. J. N. ; Sanchez-Ante, Gildardo ; Rodríguez-Muñoz, Mateo ; Renteria-Salcedo, Jose A. ; Elías-Zuñiga, Alex ; Sanchez-Martinez, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e73746461e53c783a2f935d66483f89279eefb23f0497be05d2d591efd6492d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Doping</topic><topic>Glass substrates</topic><topic>Lattice parameters</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Oxidation</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Refractivity</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Ultraviolet emission</topic><topic>Valence</topic><topic>Wurtzite</topic><topic>Ytterbium</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Mena, Edgar R.</creatorcontrib><creatorcontrib>Ceballos-Sanchez, O.</creatorcontrib><creatorcontrib>Hooper, T. J. N.</creatorcontrib><creatorcontrib>Sanchez-Ante, Gildardo</creatorcontrib><creatorcontrib>Rodríguez-Muñoz, Mateo</creatorcontrib><creatorcontrib>Renteria-Salcedo, Jose A.</creatorcontrib><creatorcontrib>Elías-Zuñiga, Alex</creatorcontrib><creatorcontrib>Sanchez-Martinez, A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Mena, Edgar R.</au><au>Ceballos-Sanchez, O.</au><au>Hooper, T. J. N.</au><au>Sanchez-Ante, Gildardo</au><au>Rodríguez-Muñoz, Mateo</au><au>Renteria-Salcedo, Jose A.</au><au>Elías-Zuñiga, Alex</au><au>Sanchez-Martinez, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021</date><risdate>2021</risdate><volume>32</volume><issue>1</issue><spage>347</spage><epage>359</epage><pages>347-359</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The spin coating method was employed to fabricate Yb-doped ZnO thin films at 0, 3, 5, 7, and 9 at.% over a glass substrate at low temperature. X-ray diffraction analysis revealed that the hexagonal wurtzite structure was retained even at high doping contents. With the incorporation of Yb +3 ions, a slight decrease in the lattice parameters and crystallite size was observed as the ytterbium content increased. X-ray photoelectron spectroscopy confirmed the presence of ytterbium in the doped ZnO films, and the oxidation state of ytterbium was 3+ for all the samples. Morphological studies revealed a surface microstructure formed by micro islands, which tended to be denser as the ytterbium content increased. Optical transmittance was observed at approximately 75–85%, a blueshift was observed, and consequently, an increase in the bandgap, which varies from 3.0 to 3.2 eV, was observed. The refractive index and extinction coefficient decreased as the ytterbium dopant concentration increased. The photoluminescence results exhibited a strong ultraviolet emission, allowing the use of these thin films in optoelectronic applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04785-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1681-2885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021, Vol.32 (1), p.347-359
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2489908865
source SpringerLink Journals (MCLS)
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Doping
Glass substrates
Lattice parameters
Low temperature
Materials Science
Optical and Electronic Materials
Optoelectronics
Oxidation
Photoelectrons
Photoluminescence
Refractivity
Spin coating
Thin films
Ultraviolet emission
Valence
Wurtzite
Ytterbium
Zinc oxide
title The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20Yb%20doping%20on%20ZnO%20thin%20films%20obtained%20via%20a%20low-temperature%20spin%20coating%20method&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=L%C3%B3pez-Mena,%20Edgar%20R.&rft.date=2021&rft.volume=32&rft.issue=1&rft.spage=347&rft.epage=359&rft.pages=347-359&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04785-7&rft_dat=%3Cproquest_cross%3E2489908865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489908865&rft_id=info:pmid/&rfr_iscdi=true