Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats
This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague–Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and d...
Gespeichert in:
Veröffentlicht in: | Biometals 2021-02, Vol.34 (1), p.33-48 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Biometals |
container_volume | 34 |
creator | Guan, Tong Xin, Youwei Zheng, Kai Wang, Ruijuan Zhang, Xia Jia, Siqi Li, Siqi Cao, Can Zhao, Xiujuan |
description | This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague–Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and different dosages quercetin plus CdCl2 groups. After 12 weeks, the kidneys were collected for metabolomics analysis and histopathology examination. In total, 11 metabolites were confirmed, the intensities of which significantly changed (up-regulated or down-regulated) compared with the control group (p |
doi_str_mv | 10.1007/s10534-020-00260-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489905710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489905710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4fb5c7cb349b399ced1df227e683b6e84604a39fc88e6f537eaaede1851a56cd3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonR6Lr6BzwYEs_VAVpoj8b4lWi86JlQOqw127ICTdx_L-76cfNEJvPMy5uHkBMG5wxAXUQGlSgL4FAAcAkF3yEzVile1EqJXTKDRsoC6rI8IIcxvgFAo0DukwMhQIimYTOyeMRkWr_0Q28jNaNZrmMfqXc0vSJF59Cmzfg-YbCY-pH6kQbMIE3-o7d9WtN-7CaLHW3X1Jpu6KeB4sfKxylg3tFgUjwie84sIx5_v3PycnP9fHVXPDzd3l9dPhRWqCoVpWsrq2wryqbNBXMo6xznCmUtWol1KaE0onG2rlG6Sig0BjtkdcVMJW0n5uRsm7sKPleOSb_5KeS2UfOybhqoFINM8S1lg48xoNOr0A8mrDUD_eVWb93q7FZv3Gqej06_o6d2wO735EdmBsQWiHk1LjD8_f1P7CceaoYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489905710</pqid></control><display><type>article</type><title>Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats</title><source>SpringerLink Journals</source><creator>Guan, Tong ; Xin, Youwei ; Zheng, Kai ; Wang, Ruijuan ; Zhang, Xia ; Jia, Siqi ; Li, Siqi ; Cao, Can ; Zhao, Xiujuan</creator><creatorcontrib>Guan, Tong ; Xin, Youwei ; Zheng, Kai ; Wang, Ruijuan ; Zhang, Xia ; Jia, Siqi ; Li, Siqi ; Cao, Can ; Zhao, Xiujuan</creatorcontrib><description>This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague–Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and different dosages quercetin plus CdCl2 groups. After 12 weeks, the kidneys were collected for metabolomics analysis and histopathology examination. In total, 11 metabolites were confirmed, the intensities of which significantly changed (up-regulated or down-regulated) compared with the control group (p < 0.00067). These metabolites include xanthosine, uric acid (UA), guanidinosuccinic acid (GSA), hypoxanthine (Hyp), 12-hydroxyeicosatetraenoic acid (tetranor 12-HETE), taurocholic acid (TCA), hydroxyphenylacetylglycine (HPAG), deoxyinosine (DI), ATP, formiminoglutamic acid (FIGLU) and arachidonic acid (AA). When high-dose quercetin and cadmium were given to rats concurrently, the intensities of above metabolites significantly restored (p < 0.0033 or p < 0.00067). The results showed quercetin attenuated Cd-induced nephrotoxicity by regulating the metabolism of lipids, amino acids, and purine, inhibiting oxidative stress, and protecting kidney functions.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-020-00260-2</identifier><identifier>PMID: 33033991</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amino acids ; Arachidonic acid ; Biochemistry ; Biomedical and Life Sciences ; Cadmium ; Cadmium chloride ; Cell Biology ; Dosage ; Histopathology ; Hypoxanthine ; Kidneys ; Life Sciences ; Lipid metabolism ; Lipids ; Medicine/Public Health ; Metabolites ; Metabolomics ; Microbiology ; Oxidative stress ; Pharmacology/Toxicology ; Plant Physiology ; Quercetin ; Taurocholic acid ; Toxicity ; Uric acid</subject><ispartof>Biometals, 2021-02, Vol.34 (1), p.33-48</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4fb5c7cb349b399ced1df227e683b6e84604a39fc88e6f537eaaede1851a56cd3</citedby><cites>FETCH-LOGICAL-c375t-4fb5c7cb349b399ced1df227e683b6e84604a39fc88e6f537eaaede1851a56cd3</cites><orcidid>0000-0001-6953-4148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-020-00260-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-020-00260-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33033991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Tong</creatorcontrib><creatorcontrib>Xin, Youwei</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Wang, Ruijuan</creatorcontrib><creatorcontrib>Zhang, Xia</creatorcontrib><creatorcontrib>Jia, Siqi</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Cao, Can</creatorcontrib><creatorcontrib>Zhao, Xiujuan</creatorcontrib><title>Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague–Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and different dosages quercetin plus CdCl2 groups. After 12 weeks, the kidneys were collected for metabolomics analysis and histopathology examination. In total, 11 metabolites were confirmed, the intensities of which significantly changed (up-regulated or down-regulated) compared with the control group (p < 0.00067). These metabolites include xanthosine, uric acid (UA), guanidinosuccinic acid (GSA), hypoxanthine (Hyp), 12-hydroxyeicosatetraenoic acid (tetranor 12-HETE), taurocholic acid (TCA), hydroxyphenylacetylglycine (HPAG), deoxyinosine (DI), ATP, formiminoglutamic acid (FIGLU) and arachidonic acid (AA). When high-dose quercetin and cadmium were given to rats concurrently, the intensities of above metabolites significantly restored (p < 0.0033 or p < 0.00067). The results showed quercetin attenuated Cd-induced nephrotoxicity by regulating the metabolism of lipids, amino acids, and purine, inhibiting oxidative stress, and protecting kidney functions.</description><subject>Amino acids</subject><subject>Arachidonic acid</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cadmium</subject><subject>Cadmium chloride</subject><subject>Cell Biology</subject><subject>Dosage</subject><subject>Histopathology</subject><subject>Hypoxanthine</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Medicine/Public Health</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Microbiology</subject><subject>Oxidative stress</subject><subject>Pharmacology/Toxicology</subject><subject>Plant Physiology</subject><subject>Quercetin</subject><subject>Taurocholic acid</subject><subject>Toxicity</subject><subject>Uric acid</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1PxCAQhonR6Lr6BzwYEs_VAVpoj8b4lWi86JlQOqw127ICTdx_L-76cfNEJvPMy5uHkBMG5wxAXUQGlSgL4FAAcAkF3yEzVile1EqJXTKDRsoC6rI8IIcxvgFAo0DukwMhQIimYTOyeMRkWr_0Q28jNaNZrmMfqXc0vSJF59Cmzfg-YbCY-pH6kQbMIE3-o7d9WtN-7CaLHW3X1Jpu6KeB4sfKxylg3tFgUjwie84sIx5_v3PycnP9fHVXPDzd3l9dPhRWqCoVpWsrq2wryqbNBXMo6xznCmUtWol1KaE0onG2rlG6Sig0BjtkdcVMJW0n5uRsm7sKPleOSb_5KeS2UfOybhqoFINM8S1lg48xoNOr0A8mrDUD_eVWb93q7FZv3Gqej06_o6d2wO735EdmBsQWiHk1LjD8_f1P7CceaoYG</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Guan, Tong</creator><creator>Xin, Youwei</creator><creator>Zheng, Kai</creator><creator>Wang, Ruijuan</creator><creator>Zhang, Xia</creator><creator>Jia, Siqi</creator><creator>Li, Siqi</creator><creator>Cao, Can</creator><creator>Zhao, Xiujuan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6953-4148</orcidid></search><sort><creationdate>20210201</creationdate><title>Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats</title><author>Guan, Tong ; Xin, Youwei ; Zheng, Kai ; Wang, Ruijuan ; Zhang, Xia ; Jia, Siqi ; Li, Siqi ; Cao, Can ; Zhao, Xiujuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4fb5c7cb349b399ced1df227e683b6e84604a39fc88e6f537eaaede1851a56cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Arachidonic acid</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cadmium</topic><topic>Cadmium chloride</topic><topic>Cell Biology</topic><topic>Dosage</topic><topic>Histopathology</topic><topic>Hypoxanthine</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Medicine/Public Health</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Microbiology</topic><topic>Oxidative stress</topic><topic>Pharmacology/Toxicology</topic><topic>Plant Physiology</topic><topic>Quercetin</topic><topic>Taurocholic acid</topic><topic>Toxicity</topic><topic>Uric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Tong</creatorcontrib><creatorcontrib>Xin, Youwei</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Wang, Ruijuan</creatorcontrib><creatorcontrib>Zhang, Xia</creatorcontrib><creatorcontrib>Jia, Siqi</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Cao, Can</creatorcontrib><creatorcontrib>Zhao, Xiujuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Tong</au><au>Xin, Youwei</au><au>Zheng, Kai</au><au>Wang, Ruijuan</au><au>Zhang, Xia</au><au>Jia, Siqi</au><au>Li, Siqi</au><au>Cao, Can</au><au>Zhao, Xiujuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><spage>33</spage><epage>48</epage><pages>33-48</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague–Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and different dosages quercetin plus CdCl2 groups. After 12 weeks, the kidneys were collected for metabolomics analysis and histopathology examination. In total, 11 metabolites were confirmed, the intensities of which significantly changed (up-regulated or down-regulated) compared with the control group (p < 0.00067). These metabolites include xanthosine, uric acid (UA), guanidinosuccinic acid (GSA), hypoxanthine (Hyp), 12-hydroxyeicosatetraenoic acid (tetranor 12-HETE), taurocholic acid (TCA), hydroxyphenylacetylglycine (HPAG), deoxyinosine (DI), ATP, formiminoglutamic acid (FIGLU) and arachidonic acid (AA). When high-dose quercetin and cadmium were given to rats concurrently, the intensities of above metabolites significantly restored (p < 0.0033 or p < 0.00067). The results showed quercetin attenuated Cd-induced nephrotoxicity by regulating the metabolism of lipids, amino acids, and purine, inhibiting oxidative stress, and protecting kidney functions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33033991</pmid><doi>10.1007/s10534-020-00260-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6953-4148</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2021-02, Vol.34 (1), p.33-48 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_proquest_journals_2489905710 |
source | SpringerLink Journals |
subjects | Amino acids Arachidonic acid Biochemistry Biomedical and Life Sciences Cadmium Cadmium chloride Cell Biology Dosage Histopathology Hypoxanthine Kidneys Life Sciences Lipid metabolism Lipids Medicine/Public Health Metabolites Metabolomics Microbiology Oxidative stress Pharmacology/Toxicology Plant Physiology Quercetin Taurocholic acid Toxicity Uric acid |
title | Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomics%20analysis%20of%20the%20effects%20of%20quercetin%20on%20renal%20toxicity%20induced%20by%20cadmium%20exposure%20in%20rats&rft.jtitle=Biometals&rft.au=Guan,%20Tong&rft.date=2021-02-01&rft.volume=34&rft.issue=1&rft.spage=33&rft.epage=48&rft.pages=33-48&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-020-00260-2&rft_dat=%3Cproquest_cross%3E2489905710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489905710&rft_id=info:pmid/33033991&rfr_iscdi=true |