Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials
Deep-learning algorithms enable precise image recognition based on high-dimensional hierarchical image features. Here, we report the development and implementation of a deep-learning-based image segmentation algorithm in an autonomous robotic system to search for two-dimensional (2D) materials. We t...
Gespeichert in:
Veröffentlicht in: | NPJ 2D materials and applications 2020-03, Vol.4 (1), Article 3 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep-learning algorithms enable precise image recognition based on high-dimensional hierarchical image features. Here, we report the development and implementation of a deep-learning-based image segmentation algorithm in an autonomous robotic system to search for two-dimensional (2D) materials. We trained the neural network based on Mask-RCNN on annotated optical microscope images of 2D materials (graphene, hBN, MoS
2
, and WTe
2
). The inference algorithm is run on a 1024 × 1024 px
2
optical microscope images for 200 ms, enabling the real-time detection of 2D materials. The detection process is robust against changes in the microscopy conditions, such as illumination and color balance, which obviates the parameter-tuning process required for conventional rule-based detection algorithms. Integrating the algorithm with a motorized optical microscope enables the automated searching and cataloging of 2D materials. This development will allow researchers to utilize a large number of 2D materials simply by exfoliating and running the automated searching process. To facilitate research, we make the training codes, dataset, and model weights publicly available. |
---|---|
ISSN: | 2397-7132 2397-7132 |
DOI: | 10.1038/s41699-020-0137-z |