Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions

Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-02, Vol.154 (7), p.074902-074902
Hauptverfasser: Opdam, J., Schelling, M. P. M., Tuinier, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 074902
container_issue 7
container_start_page 074902
container_title The Journal of chemical physics
container_volume 154
creator Opdam, J.
Schelling, M. P. M.
Tuinier, R.
description Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.
doi_str_mv 10.1063/5.0037963
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2489891521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491945680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</originalsourceid><addsrcrecordid>eNp90U1rFTEUBuBQlPZau-gfkIAbFaaeTD4m6U6KVaGgC7seMpkTJ2Vmck1mLvrvTbm3LQi6OpvnvBzeQ8g5gwsGir-XFwC8MYofkQ0DbapGGXhGNgA1q4wCdUJe5HwHAKypxTE54VxBow3fkPHbYDPSDge7CzHR6GkXZpt-08GmvsrbARPSKfxa1oT5kl4nRLqL4zohXQaMBYbZjWsf5h-0CEy7GNJ-2cWyGuYFk3VLiHN-SZ57O2Y8O8xTcnv98fvV5-rm66cvVx9uKie0WKray1ozpXzHZMeslNI62wvBXaO1b5gF7HzTaeOVAgGi82C1tw3vwTiwlp-SN_vcbYo_V8xLO4XscBztjHHNbS0MM0IqDYW-_ovexTXN5bqitNGGyZoV9XavXIo5J_TtNoWptNQyaO9f0Mr28IJiXx0S127C_lE-dF7Auz3ILiz2vpj_pv0T72J6gu229_wPO_SdyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489891521</pqid></control><display><type>article</type><title>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Opdam, J. ; Schelling, M. P. M. ; Tuinier, R.</creator><creatorcontrib>Opdam, J. ; Schelling, M. P. M. ; Tuinier, R.</creatorcontrib><description>Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0037963</identifier><identifier>PMID: 33607893</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binary mixtures ; Colloids ; Computer simulation ; Depletion ; Phase diagrams ; Reservoirs ; Simulation ; Solid solutions</subject><ispartof>The Journal of chemical physics, 2021-02, Vol.154 (7), p.074902-074902</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</citedby><cites>FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</cites><orcidid>0000-0002-4096-7107 ; 0000-0001-7494-5152 ; 0000-0002-6704-9007 ; 0000000240967107 ; 0000000174945152 ; 0000000267049007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0037963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33607893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Opdam, J.</creatorcontrib><creatorcontrib>Schelling, M. P. M.</creatorcontrib><creatorcontrib>Tuinier, R.</creatorcontrib><title>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.</description><subject>Binary mixtures</subject><subject>Colloids</subject><subject>Computer simulation</subject><subject>Depletion</subject><subject>Phase diagrams</subject><subject>Reservoirs</subject><subject>Simulation</subject><subject>Solid solutions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFTEUBuBQlPZau-gfkIAbFaaeTD4m6U6KVaGgC7seMpkTJ2Vmck1mLvrvTbm3LQi6OpvnvBzeQ8g5gwsGir-XFwC8MYofkQ0DbapGGXhGNgA1q4wCdUJe5HwHAKypxTE54VxBow3fkPHbYDPSDge7CzHR6GkXZpt-08GmvsrbARPSKfxa1oT5kl4nRLqL4zohXQaMBYbZjWsf5h-0CEy7GNJ-2cWyGuYFk3VLiHN-SZ57O2Y8O8xTcnv98fvV5-rm66cvVx9uKie0WKray1ozpXzHZMeslNI62wvBXaO1b5gF7HzTaeOVAgGi82C1tw3vwTiwlp-SN_vcbYo_V8xLO4XscBztjHHNbS0MM0IqDYW-_ovexTXN5bqitNGGyZoV9XavXIo5J_TtNoWptNQyaO9f0Mr28IJiXx0S127C_lE-dF7Auz3ILiz2vpj_pv0T72J6gu229_wPO_SdyQ</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Opdam, J.</creator><creator>Schelling, M. P. M.</creator><creator>Tuinier, R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><orcidid>https://orcid.org/0000-0001-7494-5152</orcidid><orcidid>https://orcid.org/0000-0002-6704-9007</orcidid><orcidid>https://orcid.org/0000000240967107</orcidid><orcidid>https://orcid.org/0000000174945152</orcidid><orcidid>https://orcid.org/0000000267049007</orcidid></search><sort><creationdate>20210221</creationdate><title>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</title><author>Opdam, J. ; Schelling, M. P. M. ; Tuinier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary mixtures</topic><topic>Colloids</topic><topic>Computer simulation</topic><topic>Depletion</topic><topic>Phase diagrams</topic><topic>Reservoirs</topic><topic>Simulation</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opdam, J.</creatorcontrib><creatorcontrib>Schelling, M. P. M.</creatorcontrib><creatorcontrib>Tuinier, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opdam, J.</au><au>Schelling, M. P. M.</au><au>Tuinier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-02-21</date><risdate>2021</risdate><volume>154</volume><issue>7</issue><spage>074902</spage><epage>074902</epage><pages>074902-074902</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33607893</pmid><doi>10.1063/5.0037963</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><orcidid>https://orcid.org/0000-0001-7494-5152</orcidid><orcidid>https://orcid.org/0000-0002-6704-9007</orcidid><orcidid>https://orcid.org/0000000240967107</orcidid><orcidid>https://orcid.org/0000000174945152</orcidid><orcidid>https://orcid.org/0000000267049007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-02, Vol.154 (7), p.074902-074902
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2489891521
source AIP Journals Complete; Alma/SFX Local Collection
subjects Binary mixtures
Colloids
Computer simulation
Depletion
Phase diagrams
Reservoirs
Simulation
Solid solutions
title Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20behavior%20of%20binary%20hard-sphere%20mixtures:%20Free%20volume%20theory%20including%20reservoir%20hard-core%20interactions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Opdam,%20J.&rft.date=2021-02-21&rft.volume=154&rft.issue=7&rft.spage=074902&rft.epage=074902&rft.pages=074902-074902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0037963&rft_dat=%3Cproquest_pubme%3E2491945680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489891521&rft_id=info:pmid/33607893&rfr_iscdi=true