Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions
Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to exp...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-02, Vol.154 (7), p.074902-074902 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 074902 |
---|---|
container_issue | 7 |
container_start_page | 074902 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Opdam, J. Schelling, M. P. M. Tuinier, R. |
description | Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions. |
doi_str_mv | 10.1063/5.0037963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2489891521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491945680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</originalsourceid><addsrcrecordid>eNp90U1rFTEUBuBQlPZau-gfkIAbFaaeTD4m6U6KVaGgC7seMpkTJ2Vmck1mLvrvTbm3LQi6OpvnvBzeQ8g5gwsGir-XFwC8MYofkQ0DbapGGXhGNgA1q4wCdUJe5HwHAKypxTE54VxBow3fkPHbYDPSDge7CzHR6GkXZpt-08GmvsrbARPSKfxa1oT5kl4nRLqL4zohXQaMBYbZjWsf5h-0CEy7GNJ-2cWyGuYFk3VLiHN-SZ57O2Y8O8xTcnv98fvV5-rm66cvVx9uKie0WKray1ozpXzHZMeslNI62wvBXaO1b5gF7HzTaeOVAgGi82C1tw3vwTiwlp-SN_vcbYo_V8xLO4XscBztjHHNbS0MM0IqDYW-_ovexTXN5bqitNGGyZoV9XavXIo5J_TtNoWptNQyaO9f0Mr28IJiXx0S127C_lE-dF7Auz3ILiz2vpj_pv0T72J6gu229_wPO_SdyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489891521</pqid></control><display><type>article</type><title>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Opdam, J. ; Schelling, M. P. M. ; Tuinier, R.</creator><creatorcontrib>Opdam, J. ; Schelling, M. P. M. ; Tuinier, R.</creatorcontrib><description>Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0037963</identifier><identifier>PMID: 33607893</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binary mixtures ; Colloids ; Computer simulation ; Depletion ; Phase diagrams ; Reservoirs ; Simulation ; Solid solutions</subject><ispartof>The Journal of chemical physics, 2021-02, Vol.154 (7), p.074902-074902</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</citedby><cites>FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</cites><orcidid>0000-0002-4096-7107 ; 0000-0001-7494-5152 ; 0000-0002-6704-9007 ; 0000000240967107 ; 0000000174945152 ; 0000000267049007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0037963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33607893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Opdam, J.</creatorcontrib><creatorcontrib>Schelling, M. P. M.</creatorcontrib><creatorcontrib>Tuinier, R.</creatorcontrib><title>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.</description><subject>Binary mixtures</subject><subject>Colloids</subject><subject>Computer simulation</subject><subject>Depletion</subject><subject>Phase diagrams</subject><subject>Reservoirs</subject><subject>Simulation</subject><subject>Solid solutions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFTEUBuBQlPZau-gfkIAbFaaeTD4m6U6KVaGgC7seMpkTJ2Vmck1mLvrvTbm3LQi6OpvnvBzeQ8g5gwsGir-XFwC8MYofkQ0DbapGGXhGNgA1q4wCdUJe5HwHAKypxTE54VxBow3fkPHbYDPSDge7CzHR6GkXZpt-08GmvsrbARPSKfxa1oT5kl4nRLqL4zohXQaMBYbZjWsf5h-0CEy7GNJ-2cWyGuYFk3VLiHN-SZ57O2Y8O8xTcnv98fvV5-rm66cvVx9uKie0WKray1ozpXzHZMeslNI62wvBXaO1b5gF7HzTaeOVAgGi82C1tw3vwTiwlp-SN_vcbYo_V8xLO4XscBztjHHNbS0MM0IqDYW-_ovexTXN5bqitNGGyZoV9XavXIo5J_TtNoWptNQyaO9f0Mr28IJiXx0S127C_lE-dF7Auz3ILiz2vpj_pv0T72J6gu229_wPO_SdyQ</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Opdam, J.</creator><creator>Schelling, M. P. M.</creator><creator>Tuinier, R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><orcidid>https://orcid.org/0000-0001-7494-5152</orcidid><orcidid>https://orcid.org/0000-0002-6704-9007</orcidid><orcidid>https://orcid.org/0000000240967107</orcidid><orcidid>https://orcid.org/0000000174945152</orcidid><orcidid>https://orcid.org/0000000267049007</orcidid></search><sort><creationdate>20210221</creationdate><title>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</title><author>Opdam, J. ; Schelling, M. P. M. ; Tuinier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-2f528166fb15b1a555acad443c788f71a0ebf7b89f660404bf0a8fa73d09c0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary mixtures</topic><topic>Colloids</topic><topic>Computer simulation</topic><topic>Depletion</topic><topic>Phase diagrams</topic><topic>Reservoirs</topic><topic>Simulation</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opdam, J.</creatorcontrib><creatorcontrib>Schelling, M. P. M.</creatorcontrib><creatorcontrib>Tuinier, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opdam, J.</au><au>Schelling, M. P. M.</au><au>Tuinier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-02-21</date><risdate>2021</risdate><volume>154</volume><issue>7</issue><spage>074902</spage><epage>074902</epage><pages>074902-074902</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Comprehensive calculations were performed to predict the phase behavior of large spherical colloids mixed with small spherical colloids that act as a depletant. To this end, the free volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20, 559 (1992)] is used as a basis and is extended to explicitly include the hard-sphere character of colloidal depletants into the expression for the free volume fraction. Taking the excluded volume of the depletants into account in both the system and the reservoir provides a relation between the depletant concentration in the reservoir and that in the system that accurately matches with computer simulation results of Dijkstra et al. [Phys. Rev. E 59, 5744 (1999)]. Moreover, the phase diagrams for highly asymmetric mixtures with size ratios q ≲ 0.2 obtained by using this new approach corroborate simulation results significantly better than earlier FVT applications to binary hard-sphere mixtures. The phase diagram of a binary hard-sphere mixture with a size ratio of q = 0.4, where a binary interstitial solid solution is formed at high densities, is investigated using a numerical free volume approach. At this size ratio, the obtained phase diagram is qualitatively different from previous FVT approaches for hard-sphere and penetrable depletants but again compares well with simulation predictions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33607893</pmid><doi>10.1063/5.0037963</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><orcidid>https://orcid.org/0000-0001-7494-5152</orcidid><orcidid>https://orcid.org/0000-0002-6704-9007</orcidid><orcidid>https://orcid.org/0000000240967107</orcidid><orcidid>https://orcid.org/0000000174945152</orcidid><orcidid>https://orcid.org/0000000267049007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-02, Vol.154 (7), p.074902-074902 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2489891521 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Binary mixtures Colloids Computer simulation Depletion Phase diagrams Reservoirs Simulation Solid solutions |
title | Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20behavior%20of%20binary%20hard-sphere%20mixtures:%20Free%20volume%20theory%20including%20reservoir%20hard-core%20interactions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Opdam,%20J.&rft.date=2021-02-21&rft.volume=154&rft.issue=7&rft.spage=074902&rft.epage=074902&rft.pages=074902-074902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0037963&rft_dat=%3Cproquest_pubme%3E2491945680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489891521&rft_id=info:pmid/33607893&rfr_iscdi=true |