Synthesis and Characterization of Conducting Polyaniline Nanostructured Thin Films for Solar Cell Applications

Optical-quality transparent, conducting polyaniline (PANI) thin films are suitable candidates for efficient counter electrodes for high-performance solar cells. In the first part of this work, the synthesis of highly uniform and homogenous nanostructured PANI films is reported. The film properties w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2021-02, Vol.73 (2), p.504-514
Hauptverfasser: Medi, Bijan, Bahramian, Alireza, Nazari, Vahide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 2
container_start_page 504
container_title JOM (1989)
container_volume 73
creator Medi, Bijan
Bahramian, Alireza
Nazari, Vahide
description Optical-quality transparent, conducting polyaniline (PANI) thin films are suitable candidates for efficient counter electrodes for high-performance solar cells. In the first part of this work, the synthesis of highly uniform and homogenous nanostructured PANI films is reported. The film properties were assessed via scanning electron microscopy, atomic force microscopy, optical profilometry, spectrophotometry, and conductimetry. Simultaneous modeling, optimization and physical characterization of the PANI nanostructured films have not received much attention in the literature. Hence, in the second part, a multi-objective optimization approach with three objectives, namely minimum film thickness, maximum transparency, and maximum conductivity, was performed based on artificial neural network models with a novel k-fold cross-validation technique. The developed models can accurately predict the film characteristics in a wide range of design variables with most residuals remarkably less than 1.0%. Furthermore, after optimization, conductivity was increased three-fold (~ 2.2 × 10 −1 S/cm) at a good level of transparency (~ 55%), which suit solar cell applications.
doi_str_mv 10.1007/s11837-020-04361-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489784184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489784184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-73c867207ece8013788c0104034635228e1cfdbf77884dc7814f23c3896844d53</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz9WkSZvpcSmuCqLCrucQ03Q3SzepSXtYf71xK3jzNAPvfW-Yh9A1JbeUEHEXKQUmMpKTjHBW0gxO0IwWnGUUCnqadsJFxoHBObqIcUcSxCs6Q251cMPWRBuxcg2utyooPZhgv9RgvcO-xbV3zagH6zb4zXcH5WxnncEvyvk4hKSMwTR4vbUOL223j7j1Aa98pwKuTdfhRd93Vh_j4iU6a1UXzdXvnKP35f26fsyeXx-e6sVzphmthkwwDaXIiTDaAKFMAGiSXiCMl6zIczBUt81HK5LAGy2A8jZnmkFVAudNweboZsrtg_8cTRzkzo_BpZMy51AJ4BR4cuWTSwcfYzCt7IPdq3CQlMifXuXUq0y9ymOvEhLEJigms9uY8Bf9D_UNQw17Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489784184</pqid></control><display><type>article</type><title>Synthesis and Characterization of Conducting Polyaniline Nanostructured Thin Films for Solar Cell Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Medi, Bijan ; Bahramian, Alireza ; Nazari, Vahide</creator><creatorcontrib>Medi, Bijan ; Bahramian, Alireza ; Nazari, Vahide</creatorcontrib><description>Optical-quality transparent, conducting polyaniline (PANI) thin films are suitable candidates for efficient counter electrodes for high-performance solar cells. In the first part of this work, the synthesis of highly uniform and homogenous nanostructured PANI films is reported. The film properties were assessed via scanning electron microscopy, atomic force microscopy, optical profilometry, spectrophotometry, and conductimetry. Simultaneous modeling, optimization and physical characterization of the PANI nanostructured films have not received much attention in the literature. Hence, in the second part, a multi-objective optimization approach with three objectives, namely minimum film thickness, maximum transparency, and maximum conductivity, was performed based on artificial neural network models with a novel k-fold cross-validation technique. The developed models can accurately predict the film characteristics in a wide range of design variables with most residuals remarkably less than 1.0%. Furthermore, after optimization, conductivity was increased three-fold (~ 2.2 × 10 −1 S/cm) at a good level of transparency (~ 55%), which suit solar cell applications.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04361-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Coating and Thin Film Materials for Energy ; Aerospace and Biological Applications ; Algorithms ; Artificial neural networks ; Atomic force microscopy ; Chemistry/Food Science ; Earth Sciences ; Engineering ; Environment ; Film thickness ; Hydrochloric acid ; Morphology ; Multiple objective analysis ; Nanostructure ; Nanostructured materials ; Neural networks ; Optical properties ; Optimization ; Optimization techniques ; Photovoltaic cells ; Physics ; Polyanilines ; Polymers ; Scanning electron microscopy ; Solar cells ; Spectrophotometry ; Synthesis ; Temperature ; Thin films</subject><ispartof>JOM (1989), 2021-02, Vol.73 (2), p.504-514</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-73c867207ece8013788c0104034635228e1cfdbf77884dc7814f23c3896844d53</citedby><cites>FETCH-LOGICAL-c319t-73c867207ece8013788c0104034635228e1cfdbf77884dc7814f23c3896844d53</cites><orcidid>0000-0002-1683-2368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04361-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04361-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Medi, Bijan</creatorcontrib><creatorcontrib>Bahramian, Alireza</creatorcontrib><creatorcontrib>Nazari, Vahide</creatorcontrib><title>Synthesis and Characterization of Conducting Polyaniline Nanostructured Thin Films for Solar Cell Applications</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Optical-quality transparent, conducting polyaniline (PANI) thin films are suitable candidates for efficient counter electrodes for high-performance solar cells. In the first part of this work, the synthesis of highly uniform and homogenous nanostructured PANI films is reported. The film properties were assessed via scanning electron microscopy, atomic force microscopy, optical profilometry, spectrophotometry, and conductimetry. Simultaneous modeling, optimization and physical characterization of the PANI nanostructured films have not received much attention in the literature. Hence, in the second part, a multi-objective optimization approach with three objectives, namely minimum film thickness, maximum transparency, and maximum conductivity, was performed based on artificial neural network models with a novel k-fold cross-validation technique. The developed models can accurately predict the film characteristics in a wide range of design variables with most residuals remarkably less than 1.0%. Furthermore, after optimization, conductivity was increased three-fold (~ 2.2 × 10 −1 S/cm) at a good level of transparency (~ 55%), which suit solar cell applications.</description><subject>Advanced Coating and Thin Film Materials for Energy</subject><subject>Aerospace and Biological Applications</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atomic force microscopy</subject><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Film thickness</subject><subject>Hydrochloric acid</subject><subject>Morphology</subject><subject>Multiple objective analysis</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Neural networks</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Spectrophotometry</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Thin films</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz9WkSZvpcSmuCqLCrucQ03Q3SzepSXtYf71xK3jzNAPvfW-Yh9A1JbeUEHEXKQUmMpKTjHBW0gxO0IwWnGUUCnqadsJFxoHBObqIcUcSxCs6Q251cMPWRBuxcg2utyooPZhgv9RgvcO-xbV3zagH6zb4zXcH5WxnncEvyvk4hKSMwTR4vbUOL223j7j1Aa98pwKuTdfhRd93Vh_j4iU6a1UXzdXvnKP35f26fsyeXx-e6sVzphmthkwwDaXIiTDaAKFMAGiSXiCMl6zIczBUt81HK5LAGy2A8jZnmkFVAudNweboZsrtg_8cTRzkzo_BpZMy51AJ4BR4cuWTSwcfYzCt7IPdq3CQlMifXuXUq0y9ymOvEhLEJigms9uY8Bf9D_UNQw17Pg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Medi, Bijan</creator><creator>Bahramian, Alireza</creator><creator>Nazari, Vahide</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-1683-2368</orcidid></search><sort><creationdate>20210201</creationdate><title>Synthesis and Characterization of Conducting Polyaniline Nanostructured Thin Films for Solar Cell Applications</title><author>Medi, Bijan ; Bahramian, Alireza ; Nazari, Vahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-73c867207ece8013788c0104034635228e1cfdbf77884dc7814f23c3896844d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced Coating and Thin Film Materials for Energy</topic><topic>Aerospace and Biological Applications</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atomic force microscopy</topic><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Film thickness</topic><topic>Hydrochloric acid</topic><topic>Morphology</topic><topic>Multiple objective analysis</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Neural networks</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Spectrophotometry</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medi, Bijan</creatorcontrib><creatorcontrib>Bahramian, Alireza</creatorcontrib><creatorcontrib>Nazari, Vahide</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medi, Bijan</au><au>Bahramian, Alireza</au><au>Nazari, Vahide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Conducting Polyaniline Nanostructured Thin Films for Solar Cell Applications</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>73</volume><issue>2</issue><spage>504</spage><epage>514</epage><pages>504-514</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Optical-quality transparent, conducting polyaniline (PANI) thin films are suitable candidates for efficient counter electrodes for high-performance solar cells. In the first part of this work, the synthesis of highly uniform and homogenous nanostructured PANI films is reported. The film properties were assessed via scanning electron microscopy, atomic force microscopy, optical profilometry, spectrophotometry, and conductimetry. Simultaneous modeling, optimization and physical characterization of the PANI nanostructured films have not received much attention in the literature. Hence, in the second part, a multi-objective optimization approach with three objectives, namely minimum film thickness, maximum transparency, and maximum conductivity, was performed based on artificial neural network models with a novel k-fold cross-validation technique. The developed models can accurately predict the film characteristics in a wide range of design variables with most residuals remarkably less than 1.0%. Furthermore, after optimization, conductivity was increased three-fold (~ 2.2 × 10 −1 S/cm) at a good level of transparency (~ 55%), which suit solar cell applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04361-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1683-2368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2021-02, Vol.73 (2), p.504-514
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2489784184
source Springer Nature - Complete Springer Journals
subjects Advanced Coating and Thin Film Materials for Energy
Aerospace and Biological Applications
Algorithms
Artificial neural networks
Atomic force microscopy
Chemistry/Food Science
Earth Sciences
Engineering
Environment
Film thickness
Hydrochloric acid
Morphology
Multiple objective analysis
Nanostructure
Nanostructured materials
Neural networks
Optical properties
Optimization
Optimization techniques
Photovoltaic cells
Physics
Polyanilines
Polymers
Scanning electron microscopy
Solar cells
Spectrophotometry
Synthesis
Temperature
Thin films
title Synthesis and Characterization of Conducting Polyaniline Nanostructured Thin Films for Solar Cell Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Conducting%20Polyaniline%20Nanostructured%20Thin%20Films%20for%20Solar%20Cell%20Applications&rft.jtitle=JOM%20(1989)&rft.au=Medi,%20Bijan&rft.date=2021-02-01&rft.volume=73&rft.issue=2&rft.spage=504&rft.epage=514&rft.pages=504-514&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04361-8&rft_dat=%3Cproquest_cross%3E2489784184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489784184&rft_id=info:pmid/&rfr_iscdi=true