Rate Theory Model of Irradiation-Induced Solute Clustering in b.c.c. Fe-Based Alloys

Solute nanoclusters are critical to the structural and mechanical integrity of numerous alloys based on the b.c.c. Fe matrix, which have risen to prominence as candidates for advanced nuclear reactor applications. Because irradiation can profoundly alter the morphology and composition of these solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-11, Vol.72 (11), p.4017-4027
Hauptverfasser: Swenson, Matthew J., Wharry, Janelle P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4027
container_issue 11
container_start_page 4017
container_title JOM (1989)
container_volume 72
creator Swenson, Matthew J.
Wharry, Janelle P.
description Solute nanoclusters are critical to the structural and mechanical integrity of numerous alloys based on the b.c.c. Fe matrix, which have risen to prominence as candidates for advanced nuclear reactor applications. Because irradiation can profoundly alter the morphology and composition of these solute nanoclusters, it is critical to understand and predict solute clustering behavior in the presence of irradiation. In this study, we advance a simple theory to model irradiation-induced nanocluster evolution subject to different irradiating particles. The model is trained and validated with experimental data following an approach similar to training a machine learning algorithm, resulting in an agile model that can be used for rapid screening of new alloys. Using the model, nanocluster evolution is found to depend upon the disordering parameter (i.e., cluster morphology and dose rate) and irradiation temperature, and is most sensitive to the solute migration, vacancy formation, and vacancy migration energies. Results are discussed with respect to the irradiation temperature shift for varying irradiating particle types and dose rates.
doi_str_mv 10.1007/s11837-020-04365-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489775731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489775731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1e9c4bd39dab10e7a8b403b9c362ed9b3a47153e61f233e694175ada8a0f46fd3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz1kzTdokx3VxdWFF0HoOaZNql9qsSXvYf2_WCt5kDm9g3jfDPISugS6AUnEbASQThGaUUM6KnPATNIOcMwIyh9PUUy4Il0yeo4sYdzRBXMEMlS9mcLj8cD4c8JO3rsO-wZsQjG3N0PqebHo71s7iV9-Nybrqxji40PbvuO1xtahT4bUjdyYm07Lr_CFeorPGdNFd_eocva3vy9Uj2T4_bFbLLalZwQYCTtW8skxZUwF1wsiKU1apNM2cVRUzXEDOXAFNxpIoDiI31khDG140ls3RzbR3H_zX6OKgd34MfTqpMy6VELlgkFzZ5KqDjzG4Ru9D-2nCQQPVx_T0lJ5O6emf9DRPEJuguD_-6sLf6n-ob5G7cQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489775731</pqid></control><display><type>article</type><title>Rate Theory Model of Irradiation-Induced Solute Clustering in b.c.c. Fe-Based Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Swenson, Matthew J. ; Wharry, Janelle P.</creator><creatorcontrib>Swenson, Matthew J. ; Wharry, Janelle P.</creatorcontrib><description>Solute nanoclusters are critical to the structural and mechanical integrity of numerous alloys based on the b.c.c. Fe matrix, which have risen to prominence as candidates for advanced nuclear reactor applications. Because irradiation can profoundly alter the morphology and composition of these solute nanoclusters, it is critical to understand and predict solute clustering behavior in the presence of irradiation. In this study, we advance a simple theory to model irradiation-induced nanocluster evolution subject to different irradiating particles. The model is trained and validated with experimental data following an approach similar to training a machine learning algorithm, resulting in an agile model that can be used for rapid screening of new alloys. Using the model, nanocluster evolution is found to depend upon the disordering parameter (i.e., cluster morphology and dose rate) and irradiation temperature, and is most sensitive to the solute migration, vacancy formation, and vacancy migration energies. Results are discussed with respect to the irradiation temperature shift for varying irradiating particle types and dose rates.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04365-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Alloys ; Atoms &amp; subatomic particles ; Charged particles ; Chemistry/Food Science ; Clustering ; Earth Sciences ; Efficiency ; Engineering ; Environment ; Evolution ; Experiments ; Ferrous alloys ; Machine learning ; Morphology ; Nanoclusters ; Nanostructured Materials under Extreme Environments ; Nuclear reactors ; Physics ; Point defects ; Radiation ; Radiation dosage ; Rate theory ; Sensitivity analysis ; Tomography ; Vacancies ; Variables</subject><ispartof>JOM (1989), 2020-11, Vol.72 (11), p.4017-4027</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1e9c4bd39dab10e7a8b403b9c362ed9b3a47153e61f233e694175ada8a0f46fd3</citedby><cites>FETCH-LOGICAL-c363t-1e9c4bd39dab10e7a8b403b9c362ed9b3a47153e61f233e694175ada8a0f46fd3</cites><orcidid>0000-0001-6163-3897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04365-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04365-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Swenson, Matthew J.</creatorcontrib><creatorcontrib>Wharry, Janelle P.</creatorcontrib><title>Rate Theory Model of Irradiation-Induced Solute Clustering in b.c.c. Fe-Based Alloys</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Solute nanoclusters are critical to the structural and mechanical integrity of numerous alloys based on the b.c.c. Fe matrix, which have risen to prominence as candidates for advanced nuclear reactor applications. Because irradiation can profoundly alter the morphology and composition of these solute nanoclusters, it is critical to understand and predict solute clustering behavior in the presence of irradiation. In this study, we advance a simple theory to model irradiation-induced nanocluster evolution subject to different irradiating particles. The model is trained and validated with experimental data following an approach similar to training a machine learning algorithm, resulting in an agile model that can be used for rapid screening of new alloys. Using the model, nanocluster evolution is found to depend upon the disordering parameter (i.e., cluster morphology and dose rate) and irradiation temperature, and is most sensitive to the solute migration, vacancy formation, and vacancy migration energies. Results are discussed with respect to the irradiation temperature shift for varying irradiating particle types and dose rates.</description><subject>Algorithms</subject><subject>Alloys</subject><subject>Atoms &amp; subatomic particles</subject><subject>Charged particles</subject><subject>Chemistry/Food Science</subject><subject>Clustering</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Environment</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Ferrous alloys</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Nanoclusters</subject><subject>Nanostructured Materials under Extreme Environments</subject><subject>Nuclear reactors</subject><subject>Physics</subject><subject>Point defects</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Rate theory</subject><subject>Sensitivity analysis</subject><subject>Tomography</subject><subject>Vacancies</subject><subject>Variables</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz1kzTdokx3VxdWFF0HoOaZNql9qsSXvYf2_WCt5kDm9g3jfDPISugS6AUnEbASQThGaUUM6KnPATNIOcMwIyh9PUUy4Il0yeo4sYdzRBXMEMlS9mcLj8cD4c8JO3rsO-wZsQjG3N0PqebHo71s7iV9-Nybrqxji40PbvuO1xtahT4bUjdyYm07Lr_CFeorPGdNFd_eocva3vy9Uj2T4_bFbLLalZwQYCTtW8skxZUwF1wsiKU1apNM2cVRUzXEDOXAFNxpIoDiI31khDG140ls3RzbR3H_zX6OKgd34MfTqpMy6VELlgkFzZ5KqDjzG4Ru9D-2nCQQPVx_T0lJ5O6emf9DRPEJuguD_-6sLf6n-ob5G7cQ4</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Swenson, Matthew J.</creator><creator>Wharry, Janelle P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6163-3897</orcidid></search><sort><creationdate>20201101</creationdate><title>Rate Theory Model of Irradiation-Induced Solute Clustering in b.c.c. Fe-Based Alloys</title><author>Swenson, Matthew J. ; Wharry, Janelle P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1e9c4bd39dab10e7a8b403b9c362ed9b3a47153e61f233e694175ada8a0f46fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alloys</topic><topic>Atoms &amp; subatomic particles</topic><topic>Charged particles</topic><topic>Chemistry/Food Science</topic><topic>Clustering</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Environment</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Ferrous alloys</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Nanoclusters</topic><topic>Nanostructured Materials under Extreme Environments</topic><topic>Nuclear reactors</topic><topic>Physics</topic><topic>Point defects</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Rate theory</topic><topic>Sensitivity analysis</topic><topic>Tomography</topic><topic>Vacancies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swenson, Matthew J.</creatorcontrib><creatorcontrib>Wharry, Janelle P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swenson, Matthew J.</au><au>Wharry, Janelle P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate Theory Model of Irradiation-Induced Solute Clustering in b.c.c. Fe-Based Alloys</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>72</volume><issue>11</issue><spage>4017</spage><epage>4027</epage><pages>4017-4027</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Solute nanoclusters are critical to the structural and mechanical integrity of numerous alloys based on the b.c.c. Fe matrix, which have risen to prominence as candidates for advanced nuclear reactor applications. Because irradiation can profoundly alter the morphology and composition of these solute nanoclusters, it is critical to understand and predict solute clustering behavior in the presence of irradiation. In this study, we advance a simple theory to model irradiation-induced nanocluster evolution subject to different irradiating particles. The model is trained and validated with experimental data following an approach similar to training a machine learning algorithm, resulting in an agile model that can be used for rapid screening of new alloys. Using the model, nanocluster evolution is found to depend upon the disordering parameter (i.e., cluster morphology and dose rate) and irradiation temperature, and is most sensitive to the solute migration, vacancy formation, and vacancy migration energies. Results are discussed with respect to the irradiation temperature shift for varying irradiating particle types and dose rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04365-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6163-3897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2020-11, Vol.72 (11), p.4017-4027
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2489775731
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Alloys
Atoms & subatomic particles
Charged particles
Chemistry/Food Science
Clustering
Earth Sciences
Efficiency
Engineering
Environment
Evolution
Experiments
Ferrous alloys
Machine learning
Morphology
Nanoclusters
Nanostructured Materials under Extreme Environments
Nuclear reactors
Physics
Point defects
Radiation
Radiation dosage
Rate theory
Sensitivity analysis
Tomography
Vacancies
Variables
title Rate Theory Model of Irradiation-Induced Solute Clustering in b.c.c. Fe-Based Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20Theory%20Model%20of%20Irradiation-Induced%20Solute%20Clustering%20in%20b.c.c.%20Fe-Based%20Alloys&rft.jtitle=JOM%20(1989)&rft.au=Swenson,%20Matthew%20J.&rft.date=2020-11-01&rft.volume=72&rft.issue=11&rft.spage=4017&rft.epage=4027&rft.pages=4017-4027&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04365-4&rft_dat=%3Cproquest_cross%3E2489775731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489775731&rft_id=info:pmid/&rfr_iscdi=true