Study of breakdown and plasma formation in the KTM tokamak with the massive conductive vacuum chamber

•The experiments were accomplished to verify and optimize the massive KTM vacuum chamber calculation model;•The analysis of the plasma initiation stage in the KTM tokamak was performed using TRANSMAK code;•The avalanche ohmic breakdown was achieved in toroidal electric field of 1.4-1.6 V/m with a to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2021-02, Vol.163, p.112167, Article 112167
Hauptverfasser: Chektybayev, B., Sadykov, A., Batyrbekov, E., Skakov, M., Zarva, D., Tazhibayeva, I., Korovikov, A., Kashikbayev, Ye, Olkhovik, D., Savkin, V., Khvostenko, P., Belbas, I., Sergeyev, D., Kavin, А., Lee, А., Pavlov, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112167
container_title Fusion engineering and design
container_volume 163
creator Chektybayev, B.
Sadykov, A.
Batyrbekov, E.
Skakov, M.
Zarva, D.
Tazhibayeva, I.
Korovikov, A.
Kashikbayev, Ye
Olkhovik, D.
Savkin, V.
Khvostenko, P.
Belbas, I.
Sergeyev, D.
Kavin, А.
Lee, А.
Pavlov, V.
description •The experiments were accomplished to verify and optimize the massive KTM vacuum chamber calculation model;•The analysis of the plasma initiation stage in the KTM tokamak was performed using TRANSMAK code;•The avalanche ohmic breakdown was achieved in toroidal electric field of 1.4-1.6 V/m with a toroidal field of 1.14 T.•The plasma discharge with the discharge duration of 65 ms and the maximum plasma current of about 100 kA was obtained. The article presents and discusses works on achieving ohmic breakdown at the KTM tokamak. The vacuum chamber of the KTM tokamak has a number of design features that significantly distinguish it from other installations - massive low-resistance vacuum chamber with unevenly distributed elements. The first experiments showed that the presence of massive asymmetrically distributed conductive elements of the KTM vacuum chamber leads to the complexity and inaccuracy of modeling the induced eddy currents and, accordingly, to the inaccuracy of calculating the field null configuration. Due to the limited value of the toroidal electric field of about 1.6 V / m and the toroidal magnetic field of 1 T, there are high requirements for the value of the stray poloidal magnetic field in the breakdown region for its implementation. So, it was required to carry out comprehensive work to achieve a breakdown at the KTM tokamak.
doi_str_mv 10.1016/j.fusengdes.2020.112167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489769228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379620307158</els_id><sourcerecordid>2489769228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fad562167c2e5aad1a7f85a2a2fee4891e87f40b193620c217d88616dc8ea923</originalsourceid><addsrcrecordid>eNqNkMFuEzEQhlcIJELhGbDEEW1qeze291hFUBBFHMjdmthj4qRrB9ubqG-P0616LdJIHo3-bzz6muYjo0tGmbjeL92UMfyxmJec8jplnAn5qlkwJbtWskG8bhZ04LTt5CDeNu9y3lPKZK1Fg7_LZB9IdGSbEA42ngOBYMnxHvIIxMU0QvExEB9I2SH5sflJSjzACAdy9mX3OBwhZ39CYmKwkymX9gRmmkZidjBuMb1v3ji4z_jh6b1qNl-_bNbf2rtft9_XN3et6fqutA7sSlyONxxXAJaBdGoFHLhD7NXAUEnX0y0bOsGp4UxapQQT1iiEgXdXzad57THFvxPmovdxSqH-qHnFpRg4VzUl55RJMeeETh-THyE9aEb1Rane62el-qJUz0orqWbyjNvosvEYDD7TlFLBeN_1snaUrX15NLeOUygV_fz_aE3fzGmssk4ek34irE9oirbRv3jsP5fkpTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489769228</pqid></control><display><type>article</type><title>Study of breakdown and plasma formation in the KTM tokamak with the massive conductive vacuum chamber</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chektybayev, B. ; Sadykov, A. ; Batyrbekov, E. ; Skakov, M. ; Zarva, D. ; Tazhibayeva, I. ; Korovikov, A. ; Kashikbayev, Ye ; Olkhovik, D. ; Savkin, V. ; Khvostenko, P. ; Belbas, I. ; Sergeyev, D. ; Kavin, А. ; Lee, А. ; Pavlov, V.</creator><creatorcontrib>Chektybayev, B. ; Sadykov, A. ; Batyrbekov, E. ; Skakov, M. ; Zarva, D. ; Tazhibayeva, I. ; Korovikov, A. ; Kashikbayev, Ye ; Olkhovik, D. ; Savkin, V. ; Khvostenko, P. ; Belbas, I. ; Sergeyev, D. ; Kavin, А. ; Lee, А. ; Pavlov, V.</creatorcontrib><description>•The experiments were accomplished to verify and optimize the massive KTM vacuum chamber calculation model;•The analysis of the plasma initiation stage in the KTM tokamak was performed using TRANSMAK code;•The avalanche ohmic breakdown was achieved in toroidal electric field of 1.4-1.6 V/m with a toroidal field of 1.14 T.•The plasma discharge with the discharge duration of 65 ms and the maximum plasma current of about 100 kA was obtained. The article presents and discusses works on achieving ohmic breakdown at the KTM tokamak. The vacuum chamber of the KTM tokamak has a number of design features that significantly distinguish it from other installations - massive low-resistance vacuum chamber with unevenly distributed elements. The first experiments showed that the presence of massive asymmetrically distributed conductive elements of the KTM vacuum chamber leads to the complexity and inaccuracy of modeling the induced eddy currents and, accordingly, to the inaccuracy of calculating the field null configuration. Due to the limited value of the toroidal electric field of about 1.6 V / m and the toroidal magnetic field of 1 T, there are high requirements for the value of the stray poloidal magnetic field in the breakdown region for its implementation. So, it was required to carry out comprehensive work to achieve a breakdown at the KTM tokamak.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2020.112167</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Breakdown ; Eddy currents ; Electric fields ; Experimental data ; Magnetic fields ; Magnetism ; Modelling ; Nuclear Science &amp; Technology ; Plasma ; Science &amp; Technology ; Skewed distributions ; Technology ; Tokamak ; Tokamak devices ; Vacuum chambers</subject><ispartof>Fusion engineering and design, 2021-02, Vol.163, p.112167, Article 112167</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612434700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c343t-fad562167c2e5aad1a7f85a2a2fee4891e87f40b193620c217d88616dc8ea923</citedby><cites>FETCH-LOGICAL-c343t-fad562167c2e5aad1a7f85a2a2fee4891e87f40b193620c217d88616dc8ea923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2020.112167$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Chektybayev, B.</creatorcontrib><creatorcontrib>Sadykov, A.</creatorcontrib><creatorcontrib>Batyrbekov, E.</creatorcontrib><creatorcontrib>Skakov, M.</creatorcontrib><creatorcontrib>Zarva, D.</creatorcontrib><creatorcontrib>Tazhibayeva, I.</creatorcontrib><creatorcontrib>Korovikov, A.</creatorcontrib><creatorcontrib>Kashikbayev, Ye</creatorcontrib><creatorcontrib>Olkhovik, D.</creatorcontrib><creatorcontrib>Savkin, V.</creatorcontrib><creatorcontrib>Khvostenko, P.</creatorcontrib><creatorcontrib>Belbas, I.</creatorcontrib><creatorcontrib>Sergeyev, D.</creatorcontrib><creatorcontrib>Kavin, А.</creatorcontrib><creatorcontrib>Lee, А.</creatorcontrib><creatorcontrib>Pavlov, V.</creatorcontrib><title>Study of breakdown and plasma formation in the KTM tokamak with the massive conductive vacuum chamber</title><title>Fusion engineering and design</title><addtitle>FUSION ENG DES</addtitle><description>•The experiments were accomplished to verify and optimize the massive KTM vacuum chamber calculation model;•The analysis of the plasma initiation stage in the KTM tokamak was performed using TRANSMAK code;•The avalanche ohmic breakdown was achieved in toroidal electric field of 1.4-1.6 V/m with a toroidal field of 1.14 T.•The plasma discharge with the discharge duration of 65 ms and the maximum plasma current of about 100 kA was obtained. The article presents and discusses works on achieving ohmic breakdown at the KTM tokamak. The vacuum chamber of the KTM tokamak has a number of design features that significantly distinguish it from other installations - massive low-resistance vacuum chamber with unevenly distributed elements. The first experiments showed that the presence of massive asymmetrically distributed conductive elements of the KTM vacuum chamber leads to the complexity and inaccuracy of modeling the induced eddy currents and, accordingly, to the inaccuracy of calculating the field null configuration. Due to the limited value of the toroidal electric field of about 1.6 V / m and the toroidal magnetic field of 1 T, there are high requirements for the value of the stray poloidal magnetic field in the breakdown region for its implementation. So, it was required to carry out comprehensive work to achieve a breakdown at the KTM tokamak.</description><subject>Breakdown</subject><subject>Eddy currents</subject><subject>Electric fields</subject><subject>Experimental data</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Modelling</subject><subject>Nuclear Science &amp; Technology</subject><subject>Plasma</subject><subject>Science &amp; Technology</subject><subject>Skewed distributions</subject><subject>Technology</subject><subject>Tokamak</subject><subject>Tokamak devices</subject><subject>Vacuum chambers</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFuEzEQhlcIJELhGbDEEW1qeze291hFUBBFHMjdmthj4qRrB9ubqG-P0616LdJIHo3-bzz6muYjo0tGmbjeL92UMfyxmJec8jplnAn5qlkwJbtWskG8bhZ04LTt5CDeNu9y3lPKZK1Fg7_LZB9IdGSbEA42ngOBYMnxHvIIxMU0QvExEB9I2SH5sflJSjzACAdy9mX3OBwhZ39CYmKwkymX9gRmmkZidjBuMb1v3ji4z_jh6b1qNl-_bNbf2rtft9_XN3et6fqutA7sSlyONxxXAJaBdGoFHLhD7NXAUEnX0y0bOsGp4UxapQQT1iiEgXdXzad57THFvxPmovdxSqH-qHnFpRg4VzUl55RJMeeETh-THyE9aEb1Rane62el-qJUz0orqWbyjNvosvEYDD7TlFLBeN_1snaUrX15NLeOUygV_fz_aE3fzGmssk4ek34irE9oirbRv3jsP5fkpTQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Chektybayev, B.</creator><creator>Sadykov, A.</creator><creator>Batyrbekov, E.</creator><creator>Skakov, M.</creator><creator>Zarva, D.</creator><creator>Tazhibayeva, I.</creator><creator>Korovikov, A.</creator><creator>Kashikbayev, Ye</creator><creator>Olkhovik, D.</creator><creator>Savkin, V.</creator><creator>Khvostenko, P.</creator><creator>Belbas, I.</creator><creator>Sergeyev, D.</creator><creator>Kavin, А.</creator><creator>Lee, А.</creator><creator>Pavlov, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202102</creationdate><title>Study of breakdown and plasma formation in the KTM tokamak with the massive conductive vacuum chamber</title><author>Chektybayev, B. ; Sadykov, A. ; Batyrbekov, E. ; Skakov, M. ; Zarva, D. ; Tazhibayeva, I. ; Korovikov, A. ; Kashikbayev, Ye ; Olkhovik, D. ; Savkin, V. ; Khvostenko, P. ; Belbas, I. ; Sergeyev, D. ; Kavin, А. ; Lee, А. ; Pavlov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fad562167c2e5aad1a7f85a2a2fee4891e87f40b193620c217d88616dc8ea923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breakdown</topic><topic>Eddy currents</topic><topic>Electric fields</topic><topic>Experimental data</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Modelling</topic><topic>Nuclear Science &amp; Technology</topic><topic>Plasma</topic><topic>Science &amp; Technology</topic><topic>Skewed distributions</topic><topic>Technology</topic><topic>Tokamak</topic><topic>Tokamak devices</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chektybayev, B.</creatorcontrib><creatorcontrib>Sadykov, A.</creatorcontrib><creatorcontrib>Batyrbekov, E.</creatorcontrib><creatorcontrib>Skakov, M.</creatorcontrib><creatorcontrib>Zarva, D.</creatorcontrib><creatorcontrib>Tazhibayeva, I.</creatorcontrib><creatorcontrib>Korovikov, A.</creatorcontrib><creatorcontrib>Kashikbayev, Ye</creatorcontrib><creatorcontrib>Olkhovik, D.</creatorcontrib><creatorcontrib>Savkin, V.</creatorcontrib><creatorcontrib>Khvostenko, P.</creatorcontrib><creatorcontrib>Belbas, I.</creatorcontrib><creatorcontrib>Sergeyev, D.</creatorcontrib><creatorcontrib>Kavin, А.</creatorcontrib><creatorcontrib>Lee, А.</creatorcontrib><creatorcontrib>Pavlov, V.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chektybayev, B.</au><au>Sadykov, A.</au><au>Batyrbekov, E.</au><au>Skakov, M.</au><au>Zarva, D.</au><au>Tazhibayeva, I.</au><au>Korovikov, A.</au><au>Kashikbayev, Ye</au><au>Olkhovik, D.</au><au>Savkin, V.</au><au>Khvostenko, P.</au><au>Belbas, I.</au><au>Sergeyev, D.</au><au>Kavin, А.</au><au>Lee, А.</au><au>Pavlov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of breakdown and plasma formation in the KTM tokamak with the massive conductive vacuum chamber</atitle><jtitle>Fusion engineering and design</jtitle><stitle>FUSION ENG DES</stitle><date>2021-02</date><risdate>2021</risdate><volume>163</volume><spage>112167</spage><pages>112167-</pages><artnum>112167</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•The experiments were accomplished to verify and optimize the massive KTM vacuum chamber calculation model;•The analysis of the plasma initiation stage in the KTM tokamak was performed using TRANSMAK code;•The avalanche ohmic breakdown was achieved in toroidal electric field of 1.4-1.6 V/m with a toroidal field of 1.14 T.•The plasma discharge with the discharge duration of 65 ms and the maximum plasma current of about 100 kA was obtained. The article presents and discusses works on achieving ohmic breakdown at the KTM tokamak. The vacuum chamber of the KTM tokamak has a number of design features that significantly distinguish it from other installations - massive low-resistance vacuum chamber with unevenly distributed elements. The first experiments showed that the presence of massive asymmetrically distributed conductive elements of the KTM vacuum chamber leads to the complexity and inaccuracy of modeling the induced eddy currents and, accordingly, to the inaccuracy of calculating the field null configuration. Due to the limited value of the toroidal electric field of about 1.6 V / m and the toroidal magnetic field of 1 T, there are high requirements for the value of the stray poloidal magnetic field in the breakdown region for its implementation. So, it was required to carry out comprehensive work to achieve a breakdown at the KTM tokamak.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2020.112167</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2021-02, Vol.163, p.112167, Article 112167
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2489769228
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Breakdown
Eddy currents
Electric fields
Experimental data
Magnetic fields
Magnetism
Modelling
Nuclear Science & Technology
Plasma
Science & Technology
Skewed distributions
Technology
Tokamak
Tokamak devices
Vacuum chambers
title Study of breakdown and plasma formation in the KTM tokamak with the massive conductive vacuum chamber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20breakdown%20and%20plasma%20formation%20in%20the%20KTM%20tokamak%20with%20the%20massive%20conductive%20vacuum%20chamber&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Chektybayev,%20B.&rft.date=2021-02&rft.volume=163&rft.spage=112167&rft.pages=112167-&rft.artnum=112167&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2020.112167&rft_dat=%3Cproquest_cross%3E2489769228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489769228&rft_id=info:pmid/&rft_els_id=S0920379620307158&rfr_iscdi=true