Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis

•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2020-12, Vol.189, p.106626, Article 106626
Hauptverfasser: De Rua, Philippe, Sakinci, Özgür Can, Beerten, Jef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106626
container_title Electric power systems research
container_volume 189
creator De Rua, Philippe
Sakinci, Özgür Can
Beerten, Jef
description •Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment. This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.
doi_str_mv 10.1016/j.epsr.2020.106626
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489765949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779620304296</els_id><sourcerecordid>2489765949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdc2rQBNzJeRhhRqK5DmpxqhrapSUfo29tS164O5-f7D4cPoStK1pRQcbNfQx_DmhE2B0IwcYRWtMh5wkgqjtGK8LxI8lyKU3QW454QImSerZDb-LbXQQ_uB3A5HOyIfY3vx063zuC3Lx19wLqzeKtD67spKwc9QFL22gB-8RYa133ieqLKVjdNUrrPTjczVbnGDSO-m9YxuniBTmrdRLj8m-fo4_HhfbNNdq9Pz5u7XWJ4zoZEFgC2ZhXNqqISurKSp6QCXkDKuRScai5MnpoMKJVUM0lFYbQ1TGbMiszwc3S93O2D_z5AHNTeH8L0RFQsLWQuMpnKiWILZYKPMUCt-uBaHUZFiZqVqr2alapZqVqUTqXbpQTT_z8OgorGQWfAugBmUNa7_-q_Zjl_2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489765949</pqid></control><display><type>article</type><title>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</title><source>Elsevier ScienceDirect Journals</source><creator>De Rua, Philippe ; Sakinci, Özgür Can ; Beerten, Jef</creator><creatorcontrib>De Rua, Philippe ; Sakinci, Özgür Can ; Beerten, Jef</creatorcontrib><description>•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment. This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2020.106626</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Comparative analysis ; Comparative studies ; Converters ; dynamic phasor ; Dynamic stability ; Eigenvalues ; Harmonic analysis ; harmonic state-space ; linear time-periodic systems ; Modelling ; Phasors ; small-signal modeling ; Stability analysis ; State space models ; Systems stability ; Transfer functions ; voltage-source converters</subject><ispartof>Electric power systems research, 2020-12, Vol.189, p.106626, Article 106626</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</citedby><cites>FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</cites><orcidid>0000-0001-5836-6089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378779620304296$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>De Rua, Philippe</creatorcontrib><creatorcontrib>Sakinci, Özgür Can</creatorcontrib><creatorcontrib>Beerten, Jef</creatorcontrib><title>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</title><title>Electric power systems research</title><description>•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment. This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.</description><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Converters</subject><subject>dynamic phasor</subject><subject>Dynamic stability</subject><subject>Eigenvalues</subject><subject>Harmonic analysis</subject><subject>harmonic state-space</subject><subject>linear time-periodic systems</subject><subject>Modelling</subject><subject>Phasors</subject><subject>small-signal modeling</subject><subject>Stability analysis</subject><subject>State space models</subject><subject>Systems stability</subject><subject>Transfer functions</subject><subject>voltage-source converters</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdc2rQBNzJeRhhRqK5DmpxqhrapSUfo29tS164O5-f7D4cPoStK1pRQcbNfQx_DmhE2B0IwcYRWtMh5wkgqjtGK8LxI8lyKU3QW454QImSerZDb-LbXQQ_uB3A5HOyIfY3vx063zuC3Lx19wLqzeKtD67spKwc9QFL22gB-8RYa133ieqLKVjdNUrrPTjczVbnGDSO-m9YxuniBTmrdRLj8m-fo4_HhfbNNdq9Pz5u7XWJ4zoZEFgC2ZhXNqqISurKSp6QCXkDKuRScai5MnpoMKJVUM0lFYbQ1TGbMiszwc3S93O2D_z5AHNTeH8L0RFQsLWQuMpnKiWILZYKPMUCt-uBaHUZFiZqVqr2alapZqVqUTqXbpQTT_z8OgorGQWfAugBmUNa7_-q_Zjl_2w</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>De Rua, Philippe</creator><creator>Sakinci, Özgür Can</creator><creator>Beerten, Jef</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5836-6089</orcidid></search><sort><creationdate>202012</creationdate><title>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</title><author>De Rua, Philippe ; Sakinci, Özgür Can ; Beerten, Jef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Converters</topic><topic>dynamic phasor</topic><topic>Dynamic stability</topic><topic>Eigenvalues</topic><topic>Harmonic analysis</topic><topic>harmonic state-space</topic><topic>linear time-periodic systems</topic><topic>Modelling</topic><topic>Phasors</topic><topic>small-signal modeling</topic><topic>Stability analysis</topic><topic>State space models</topic><topic>Systems stability</topic><topic>Transfer functions</topic><topic>voltage-source converters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Rua, Philippe</creatorcontrib><creatorcontrib>Sakinci, Özgür Can</creatorcontrib><creatorcontrib>Beerten, Jef</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Rua, Philippe</au><au>Sakinci, Özgür Can</au><au>Beerten, Jef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</atitle><jtitle>Electric power systems research</jtitle><date>2020-12</date><risdate>2020</risdate><volume>189</volume><spage>106626</spage><pages>106626-</pages><artnum>106626</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment. This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2020.106626</doi><orcidid>https://orcid.org/0000-0001-5836-6089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2020-12, Vol.189, p.106626, Article 106626
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2489765949
source Elsevier ScienceDirect Journals
subjects Comparative analysis
Comparative studies
Converters
dynamic phasor
Dynamic stability
Eigenvalues
Harmonic analysis
harmonic state-space
linear time-periodic systems
Modelling
Phasors
small-signal modeling
Stability analysis
State space models
Systems stability
Transfer functions
voltage-source converters
title Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Dynamic%20Phasor%20and%20Harmonic%20State-Space%20Modeling%20for%20Small-Signal%20Stability%20Analysis&rft.jtitle=Electric%20power%20systems%20research&rft.au=De%20Rua,%20Philippe&rft.date=2020-12&rft.volume=189&rft.spage=106626&rft.pages=106626-&rft.artnum=106626&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2020.106626&rft_dat=%3Cproquest_cross%3E2489765949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489765949&rft_id=info:pmid/&rft_els_id=S0378779620304296&rfr_iscdi=true