Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis
•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic sy...
Gespeichert in:
Veröffentlicht in: | Electric power systems research 2020-12, Vol.189, p.106626, Article 106626 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106626 |
container_title | Electric power systems research |
container_volume | 189 |
creator | De Rua, Philippe Sakinci, Özgür Can Beerten, Jef |
description | •Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment.
This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model. |
doi_str_mv | 10.1016/j.epsr.2020.106626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489765949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779620304296</els_id><sourcerecordid>2489765949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdc2rQBNzJeRhhRqK5DmpxqhrapSUfo29tS164O5-f7D4cPoStK1pRQcbNfQx_DmhE2B0IwcYRWtMh5wkgqjtGK8LxI8lyKU3QW454QImSerZDb-LbXQQ_uB3A5HOyIfY3vx063zuC3Lx19wLqzeKtD67spKwc9QFL22gB-8RYa133ieqLKVjdNUrrPTjczVbnGDSO-m9YxuniBTmrdRLj8m-fo4_HhfbNNdq9Pz5u7XWJ4zoZEFgC2ZhXNqqISurKSp6QCXkDKuRScai5MnpoMKJVUM0lFYbQ1TGbMiszwc3S93O2D_z5AHNTeH8L0RFQsLWQuMpnKiWILZYKPMUCt-uBaHUZFiZqVqr2alapZqVqUTqXbpQTT_z8OgorGQWfAugBmUNa7_-q_Zjl_2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489765949</pqid></control><display><type>article</type><title>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</title><source>Elsevier ScienceDirect Journals</source><creator>De Rua, Philippe ; Sakinci, Özgür Can ; Beerten, Jef</creator><creatorcontrib>De Rua, Philippe ; Sakinci, Özgür Can ; Beerten, Jef</creatorcontrib><description>•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment.
This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2020.106626</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Comparative analysis ; Comparative studies ; Converters ; dynamic phasor ; Dynamic stability ; Eigenvalues ; Harmonic analysis ; harmonic state-space ; linear time-periodic systems ; Modelling ; Phasors ; small-signal modeling ; Stability analysis ; State space models ; Systems stability ; Transfer functions ; voltage-source converters</subject><ispartof>Electric power systems research, 2020-12, Vol.189, p.106626, Article 106626</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</citedby><cites>FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</cites><orcidid>0000-0001-5836-6089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378779620304296$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>De Rua, Philippe</creatorcontrib><creatorcontrib>Sakinci, Özgür Can</creatorcontrib><creatorcontrib>Beerten, Jef</creatorcontrib><title>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</title><title>Electric power systems research</title><description>•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment.
This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.</description><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Converters</subject><subject>dynamic phasor</subject><subject>Dynamic stability</subject><subject>Eigenvalues</subject><subject>Harmonic analysis</subject><subject>harmonic state-space</subject><subject>linear time-periodic systems</subject><subject>Modelling</subject><subject>Phasors</subject><subject>small-signal modeling</subject><subject>Stability analysis</subject><subject>State space models</subject><subject>Systems stability</subject><subject>Transfer functions</subject><subject>voltage-source converters</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdcdc2rQBNzJeRhhRqK5DmpxqhrapSUfo29tS164O5-f7D4cPoStK1pRQcbNfQx_DmhE2B0IwcYRWtMh5wkgqjtGK8LxI8lyKU3QW454QImSerZDb-LbXQQ_uB3A5HOyIfY3vx063zuC3Lx19wLqzeKtD67spKwc9QFL22gB-8RYa133ieqLKVjdNUrrPTjczVbnGDSO-m9YxuniBTmrdRLj8m-fo4_HhfbNNdq9Pz5u7XWJ4zoZEFgC2ZhXNqqISurKSp6QCXkDKuRScai5MnpoMKJVUM0lFYbQ1TGbMiszwc3S93O2D_z5AHNTeH8L0RFQsLWQuMpnKiWILZYKPMUCt-uBaHUZFiZqVqr2alapZqVqUTqXbpQTT_z8OgorGQWfAugBmUNa7_-q_Zjl_2w</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>De Rua, Philippe</creator><creator>Sakinci, Özgür Can</creator><creator>Beerten, Jef</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5836-6089</orcidid></search><sort><creationdate>202012</creationdate><title>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</title><author>De Rua, Philippe ; Sakinci, Özgür Can ; Beerten, Jef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-98eedf2b15b8b6abd9340be38e4339631a36c74c5e1191a29168cadc2952d65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Converters</topic><topic>dynamic phasor</topic><topic>Dynamic stability</topic><topic>Eigenvalues</topic><topic>Harmonic analysis</topic><topic>harmonic state-space</topic><topic>linear time-periodic systems</topic><topic>Modelling</topic><topic>Phasors</topic><topic>small-signal modeling</topic><topic>Stability analysis</topic><topic>State space models</topic><topic>Systems stability</topic><topic>Transfer functions</topic><topic>voltage-source converters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Rua, Philippe</creatorcontrib><creatorcontrib>Sakinci, Özgür Can</creatorcontrib><creatorcontrib>Beerten, Jef</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Rua, Philippe</au><au>Sakinci, Özgür Can</au><au>Beerten, Jef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis</atitle><jtitle>Electric power systems research</jtitle><date>2020-12</date><risdate>2020</risdate><volume>189</volume><spage>106626</spage><pages>106626-</pages><artnum>106626</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Dynamic phasors and harmonic state-space are promising small-signal modeling methods.•Both methods provide linear time-invariant representations of time-periodic systems.•With same design choices, the models have same eigenvalues and transfer functions.•Due to truncation, models of time-periodic systems present spurious eigenvalues.•Spurious eigenvalues should be disregarded for eigenvalue-based stability assessment.
This paper conducts a comparison of two promising frequency-lifted representations used in the state-space modeling of power-electronic converters: dynamic phasors and harmonic state-space. These methods originate from similar hypotheses and aim to tackle the time-periodicity problem observed in systems with multiple harmonic components in steady state. The paper derives the theoretical foundations of the methods with an emphasis on their similarities and differences, and applies them to a two-level voltage-source converter. The application demonstrates the effects of different truncation orders of the models infinite formulations. Stability analysis tools such as eigenvalues and transfer functions are examined and benchmarked against a classical dq-frame small-signal model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2020.106626</doi><orcidid>https://orcid.org/0000-0001-5836-6089</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7796 |
ispartof | Electric power systems research, 2020-12, Vol.189, p.106626, Article 106626 |
issn | 0378-7796 1873-2046 |
language | eng |
recordid | cdi_proquest_journals_2489765949 |
source | Elsevier ScienceDirect Journals |
subjects | Comparative analysis Comparative studies Converters dynamic phasor Dynamic stability Eigenvalues Harmonic analysis harmonic state-space linear time-periodic systems Modelling Phasors small-signal modeling Stability analysis State space models Systems stability Transfer functions voltage-source converters |
title | Comparative Study of Dynamic Phasor and Harmonic State-Space Modeling for Small-Signal Stability Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Dynamic%20Phasor%20and%20Harmonic%20State-Space%20Modeling%20for%20Small-Signal%20Stability%20Analysis&rft.jtitle=Electric%20power%20systems%20research&rft.au=De%20Rua,%20Philippe&rft.date=2020-12&rft.volume=189&rft.spage=106626&rft.pages=106626-&rft.artnum=106626&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2020.106626&rft_dat=%3Cproquest_cross%3E2489765949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489765949&rft_id=info:pmid/&rft_els_id=S0378779620304296&rfr_iscdi=true |