Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss

In this paper, a multi-mode hexagonal photonic crystal fiber is proposed. The cladding of the proposed PCF has circular air-holes arranged in five hexagonal rings whereas core has tiny circular air-holes arranged in two different rings. This structure is designed and simulated using COMSOL Multiphys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2021-02, Vol.53 (2), Article 130
Hauptverfasser: Pandey, Sanat Kumar, Maurya, J. B., Verma, R. N., Prajapati, Yogendra Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Optical and quantum electronics
container_volume 53
creator Pandey, Sanat Kumar
Maurya, J. B.
Verma, R. N.
Prajapati, Yogendra Kumar
description In this paper, a multi-mode hexagonal photonic crystal fiber is proposed. The cladding of the proposed PCF has circular air-holes arranged in five hexagonal rings whereas core has tiny circular air-holes arranged in two different rings. This structure is designed and simulated using COMSOL Multiphysics which is based on finite element method. The performance parameters viz chromatic dispersion, confinement loss, V-number, effective area, and nonlinearity coefficient are determined by wavelength interrogation method and optimized with respect to size and number of tiny circular air-holes in the inner ring of the core. The results show that V-number is greater than 3.1416 over wide range of spectrum which confirms the multimode operation of the fiber. The obtained value of performance parameters at 1.55 µm wavelength are; negative dispersion (− 2159 ps nm −1  km −1 ), confinement loss of (3.61 × 10 −3  dB km −1 ), V-number (3.66), effective area (3.44 µm 2 ), and nonlinearity coefficient (27.5 w −1  km −1 ). The extremely negative dispersion alongwith very low confinement loss at the center wavelength of main communication window, i.e., 1.55 µm suggests that the proposed PCF is best suited for the dispersion compensation.
doi_str_mv 10.1007/s11082-021-02779-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489669611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489669611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7e402389295d654efe2e49fd26dbb1df260ff6569664244245a1a5e42933327d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82qS3c1ujlL8gooXBW8h3UzalN1kTVJt_72pFbwJGTIzvM8w8yJ0Sck1JaS5iZSSlhWE0RxNIwp6hCa0bljR0ub9GE1ISXjRCipO0VmMa0IIr2oyQf550yc7eA14BVu19E71eFz55J3tcBd2MeWGsQsI2PiAYZsCDNDvsIOlSvYTcLcKfshph7WNI4RovcPKadz7L9x5Z6zLhEu5jvEcnRjVR7j4_afo7f7udfZYzF8enma386IrqUhFAxVhZSuYqDWvKzDAoBJGM64XC6oN48QYXnPBecWq_GpFVQ0VE2VZskaXU3R1mDsG_7GBmOTab0I-LkpWtRkTnNKsYgdVF_JuAYwcgx1U2ElK5N5YeTBWZmPlj7FyD5UHKGaxW0L4G_0P9Q1tT30a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489669611</pqid></control><display><type>article</type><title>Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss</title><source>SpringerLink Journals (MCLS)</source><creator>Pandey, Sanat Kumar ; Maurya, J. B. ; Verma, R. N. ; Prajapati, Yogendra Kumar</creator><creatorcontrib>Pandey, Sanat Kumar ; Maurya, J. B. ; Verma, R. N. ; Prajapati, Yogendra Kumar</creatorcontrib><description>In this paper, a multi-mode hexagonal photonic crystal fiber is proposed. The cladding of the proposed PCF has circular air-holes arranged in five hexagonal rings whereas core has tiny circular air-holes arranged in two different rings. This structure is designed and simulated using COMSOL Multiphysics which is based on finite element method. The performance parameters viz chromatic dispersion, confinement loss, V-number, effective area, and nonlinearity coefficient are determined by wavelength interrogation method and optimized with respect to size and number of tiny circular air-holes in the inner ring of the core. The results show that V-number is greater than 3.1416 over wide range of spectrum which confirms the multimode operation of the fiber. The obtained value of performance parameters at 1.55 µm wavelength are; negative dispersion (− 2159 ps nm −1  km −1 ), confinement loss of (3.61 × 10 −3  dB km −1 ), V-number (3.66), effective area (3.44 µm 2 ), and nonlinearity coefficient (27.5 w −1  km −1 ). The extremely negative dispersion alongwith very low confinement loss at the center wavelength of main communication window, i.e., 1.55 µm suggests that the proposed PCF is best suited for the dispersion compensation.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-021-02779-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Confinement ; Crystal fibers ; Electrical Engineering ; Finite element method ; Interrogation ; Lasers ; Nonlinearity ; Optical Devices ; Optics ; Parameters ; Photonic crystals ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optical and quantum electronics, 2021-02, Vol.53 (2), Article 130</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7e402389295d654efe2e49fd26dbb1df260ff6569664244245a1a5e42933327d3</citedby><cites>FETCH-LOGICAL-c319t-7e402389295d654efe2e49fd26dbb1df260ff6569664244245a1a5e42933327d3</cites><orcidid>0000-0002-6752-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-021-02779-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-021-02779-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pandey, Sanat Kumar</creatorcontrib><creatorcontrib>Maurya, J. B.</creatorcontrib><creatorcontrib>Verma, R. N.</creatorcontrib><creatorcontrib>Prajapati, Yogendra Kumar</creatorcontrib><title>Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper, a multi-mode hexagonal photonic crystal fiber is proposed. The cladding of the proposed PCF has circular air-holes arranged in five hexagonal rings whereas core has tiny circular air-holes arranged in two different rings. This structure is designed and simulated using COMSOL Multiphysics which is based on finite element method. The performance parameters viz chromatic dispersion, confinement loss, V-number, effective area, and nonlinearity coefficient are determined by wavelength interrogation method and optimized with respect to size and number of tiny circular air-holes in the inner ring of the core. The results show that V-number is greater than 3.1416 over wide range of spectrum which confirms the multimode operation of the fiber. The obtained value of performance parameters at 1.55 µm wavelength are; negative dispersion (− 2159 ps nm −1  km −1 ), confinement loss of (3.61 × 10 −3  dB km −1 ), V-number (3.66), effective area (3.44 µm 2 ), and nonlinearity coefficient (27.5 w −1  km −1 ). The extremely negative dispersion alongwith very low confinement loss at the center wavelength of main communication window, i.e., 1.55 µm suggests that the proposed PCF is best suited for the dispersion compensation.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Confinement</subject><subject>Crystal fibers</subject><subject>Electrical Engineering</subject><subject>Finite element method</subject><subject>Interrogation</subject><subject>Lasers</subject><subject>Nonlinearity</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82qS3c1ujlL8gooXBW8h3UzalN1kTVJt_72pFbwJGTIzvM8w8yJ0Sck1JaS5iZSSlhWE0RxNIwp6hCa0bljR0ub9GE1ISXjRCipO0VmMa0IIr2oyQf550yc7eA14BVu19E71eFz55J3tcBd2MeWGsQsI2PiAYZsCDNDvsIOlSvYTcLcKfshph7WNI4RovcPKadz7L9x5Z6zLhEu5jvEcnRjVR7j4_afo7f7udfZYzF8enma386IrqUhFAxVhZSuYqDWvKzDAoBJGM64XC6oN48QYXnPBecWq_GpFVQ0VE2VZskaXU3R1mDsG_7GBmOTab0I-LkpWtRkTnNKsYgdVF_JuAYwcgx1U2ElK5N5YeTBWZmPlj7FyD5UHKGaxW0L4G_0P9Q1tT30a</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Pandey, Sanat Kumar</creator><creator>Maurya, J. B.</creator><creator>Verma, R. N.</creator><creator>Prajapati, Yogendra Kumar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6752-5667</orcidid></search><sort><creationdate>20210201</creationdate><title>Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss</title><author>Pandey, Sanat Kumar ; Maurya, J. B. ; Verma, R. N. ; Prajapati, Yogendra Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7e402389295d654efe2e49fd26dbb1df260ff6569664244245a1a5e42933327d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Confinement</topic><topic>Crystal fibers</topic><topic>Electrical Engineering</topic><topic>Finite element method</topic><topic>Interrogation</topic><topic>Lasers</topic><topic>Nonlinearity</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Sanat Kumar</creatorcontrib><creatorcontrib>Maurya, J. B.</creatorcontrib><creatorcontrib>Verma, R. N.</creatorcontrib><creatorcontrib>Prajapati, Yogendra Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Sanat Kumar</au><au>Maurya, J. B.</au><au>Verma, R. N.</au><au>Prajapati, Yogendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>53</volume><issue>2</issue><artnum>130</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper, a multi-mode hexagonal photonic crystal fiber is proposed. The cladding of the proposed PCF has circular air-holes arranged in five hexagonal rings whereas core has tiny circular air-holes arranged in two different rings. This structure is designed and simulated using COMSOL Multiphysics which is based on finite element method. The performance parameters viz chromatic dispersion, confinement loss, V-number, effective area, and nonlinearity coefficient are determined by wavelength interrogation method and optimized with respect to size and number of tiny circular air-holes in the inner ring of the core. The results show that V-number is greater than 3.1416 over wide range of spectrum which confirms the multimode operation of the fiber. The obtained value of performance parameters at 1.55 µm wavelength are; negative dispersion (− 2159 ps nm −1  km −1 ), confinement loss of (3.61 × 10 −3  dB km −1 ), V-number (3.66), effective area (3.44 µm 2 ), and nonlinearity coefficient (27.5 w −1  km −1 ). The extremely negative dispersion alongwith very low confinement loss at the center wavelength of main communication window, i.e., 1.55 µm suggests that the proposed PCF is best suited for the dispersion compensation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-021-02779-1</doi><orcidid>https://orcid.org/0000-0002-6752-5667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2021-02, Vol.53 (2), Article 130
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2489669611
source SpringerLink Journals (MCLS)
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Confinement
Crystal fibers
Electrical Engineering
Finite element method
Interrogation
Lasers
Nonlinearity
Optical Devices
Optics
Parameters
Photonic crystals
Photonics
Physics
Physics and Astronomy
title Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimode%20hexagonal%20photonic%20crystal%20fiber%20for%20extremely%20negative%20chromatic%20dispersion%20and%20low%20confinement%20loss&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Pandey,%20Sanat%20Kumar&rft.date=2021-02-01&rft.volume=53&rft.issue=2&rft.artnum=130&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-021-02779-1&rft_dat=%3Cproquest_cross%3E2489669611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489669611&rft_id=info:pmid/&rfr_iscdi=true