Quantization for an evolution equation with critical exponential growth on a closed Riemann surface

In this paper, we analyze the concentration behavior of a positive solution to an evolution equation with critical exponential growth on a closed Riemann surface, and particularly derive an energy identity for such a solution. This extends a result of Lamm-Robert-Struwe and complements that of Yang.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2021-03, Vol.64 (3), p.589-622
1. Verfasser: Zhu, Chaona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue 3
container_start_page 589
container_title Science China. Mathematics
container_volume 64
creator Zhu, Chaona
description In this paper, we analyze the concentration behavior of a positive solution to an evolution equation with critical exponential growth on a closed Riemann surface, and particularly derive an energy identity for such a solution. This extends a result of Lamm-Robert-Struwe and complements that of Yang.
doi_str_mv 10.1007/s11425-018-9453-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489652253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489652253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ebf6e2f7b8b30b26f0d20a6b0945340e3d95aa5c6ee1e33690b0756d0ef40f753</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgsu4P8BbwHM1Hk7ZHWfyCBVH0HNJ0snbpNrtJ66q_3tQKnpzDzDDz3hvmIXTO6CWjNL-KjGVcEsoKUmZSEHmEZqxQJUmJH6de5RnJeSFO0SLGDU0hSprlYobs02C6vvkyfeM77HzApsPw7tvhZwD7Ydocmv4N29D0jTUtho-d7yDxUr8O_pB2CWOwbX2EGj83sDVdh-MQnLFwhk6caSMsfuscvd7evCzvyerx7mF5vSJWMNUTqJwC7vKqqAStuHK05tSoio4_ZRREXUpjpFUADIRQJa1oLlVNwWXU5VLM0cWkuwt-P0Ds9cYPoUsnNc-KUknOpUgoNqFs8DEGcHoXmq0Jn5pRPdqpJzt1slOPp_WozCdOTNhuDeFP-X_SN00neQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489652253</pqid></control><display><type>article</type><title>Quantization for an evolution equation with critical exponential growth on a closed Riemann surface</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Chaona</creator><creatorcontrib>Zhu, Chaona</creatorcontrib><description>In this paper, we analyze the concentration behavior of a positive solution to an evolution equation with critical exponential growth on a closed Riemann surface, and particularly derive an energy identity for such a solution. This extends a result of Lamm-Robert-Struwe and complements that of Yang.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9453-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Evolution ; Mathematics ; Mathematics and Statistics ; Riemann surfaces</subject><ispartof>Science China. Mathematics, 2021-03, Vol.64 (3), p.589-622</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ebf6e2f7b8b30b26f0d20a6b0945340e3d95aa5c6ee1e33690b0756d0ef40f753</citedby><cites>FETCH-LOGICAL-c316t-ebf6e2f7b8b30b26f0d20a6b0945340e3d95aa5c6ee1e33690b0756d0ef40f753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-018-9453-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-018-9453-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Chaona</creatorcontrib><title>Quantization for an evolution equation with critical exponential growth on a closed Riemann surface</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we analyze the concentration behavior of a positive solution to an evolution equation with critical exponential growth on a closed Riemann surface, and particularly derive an energy identity for such a solution. This extends a result of Lamm-Robert-Struwe and complements that of Yang.</description><subject>Applications of Mathematics</subject><subject>Evolution</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann surfaces</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgsu4P8BbwHM1Hk7ZHWfyCBVH0HNJ0snbpNrtJ66q_3tQKnpzDzDDz3hvmIXTO6CWjNL-KjGVcEsoKUmZSEHmEZqxQJUmJH6de5RnJeSFO0SLGDU0hSprlYobs02C6vvkyfeM77HzApsPw7tvhZwD7Ydocmv4N29D0jTUtho-d7yDxUr8O_pB2CWOwbX2EGj83sDVdh-MQnLFwhk6caSMsfuscvd7evCzvyerx7mF5vSJWMNUTqJwC7vKqqAStuHK05tSoio4_ZRREXUpjpFUADIRQJa1oLlVNwWXU5VLM0cWkuwt-P0Ds9cYPoUsnNc-KUknOpUgoNqFs8DEGcHoXmq0Jn5pRPdqpJzt1slOPp_WozCdOTNhuDeFP-X_SN00neQA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhu, Chaona</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Quantization for an evolution equation with critical exponential growth on a closed Riemann surface</title><author>Zhu, Chaona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ebf6e2f7b8b30b26f0d20a6b0945340e3d95aa5c6ee1e33690b0756d0ef40f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Evolution</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chaona</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chaona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantization for an evolution equation with critical exponential growth on a closed Riemann surface</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>64</volume><issue>3</issue><spage>589</spage><epage>622</epage><pages>589-622</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we analyze the concentration behavior of a positive solution to an evolution equation with critical exponential growth on a closed Riemann surface, and particularly derive an energy identity for such a solution. This extends a result of Lamm-Robert-Struwe and complements that of Yang.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9453-5</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2021-03, Vol.64 (3), p.589-622
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2489652253
source SpringerNature Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Evolution
Mathematics
Mathematics and Statistics
Riemann surfaces
title Quantization for an evolution equation with critical exponential growth on a closed Riemann surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantization%20for%20an%20evolution%20equation%20with%20critical%20exponential%20growth%20on%20a%20closed%20Riemann%20surface&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zhu,%20Chaona&rft.date=2021-03-01&rft.volume=64&rft.issue=3&rft.spage=589&rft.epage=622&rft.pages=589-622&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9453-5&rft_dat=%3Cproquest_cross%3E2489652253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489652253&rft_id=info:pmid/&rfr_iscdi=true