A Computability Perspective on (Verified) Machine Learning
There is a strong consensus that combining the versatility of machine learning with the assurances given by formal verification is highly desirable. It is much less clear what verified machine learning should mean exactly. We consider this question from the (unexpected?) perspective of computable an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Crook, Tonicha Morgan, Jay Pauly, Arno Roggenbach, Markus |
description | There is a strong consensus that combining the versatility of machine learning with the assurances given by formal verification is highly desirable. It is much less clear what verified machine learning should mean exactly. We consider this question from the (unexpected?) perspective of computable analysis. This allows us to define the computational tasks underlying verified ML in a model-agnostic way, and show that they are in principle computable. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2489446072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489446072</sourcerecordid><originalsourceid>FETCH-proquest_journals_24894460723</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwclRwzs8tKC1JTMrMySypVAhILSouSE0uySxLVcjPU9AISy3KTMtMTdFU8E1MzsjMS1XwSU0sysvMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjEwtLExMzA3MjY-JUAQCBDTZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489446072</pqid></control><display><type>article</type><title>A Computability Perspective on (Verified) Machine Learning</title><source>Free E- Journals</source><creator>Crook, Tonicha ; Morgan, Jay ; Pauly, Arno ; Roggenbach, Markus</creator><creatorcontrib>Crook, Tonicha ; Morgan, Jay ; Pauly, Arno ; Roggenbach, Markus</creatorcontrib><description>There is a strong consensus that combining the versatility of machine learning with the assurances given by formal verification is highly desirable. It is much less clear what verified machine learning should mean exactly. We consider this question from the (unexpected?) perspective of computable analysis. This allows us to define the computational tasks underlying verified ML in a model-agnostic way, and show that they are in principle computable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Machine learning</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Crook, Tonicha</creatorcontrib><creatorcontrib>Morgan, Jay</creatorcontrib><creatorcontrib>Pauly, Arno</creatorcontrib><creatorcontrib>Roggenbach, Markus</creatorcontrib><title>A Computability Perspective on (Verified) Machine Learning</title><title>arXiv.org</title><description>There is a strong consensus that combining the versatility of machine learning with the assurances given by formal verification is highly desirable. It is much less clear what verified machine learning should mean exactly. We consider this question from the (unexpected?) perspective of computable analysis. This allows us to define the computational tasks underlying verified ML in a model-agnostic way, and show that they are in principle computable.</description><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwclRwzs8tKC1JTMrMySypVAhILSouSE0uySxLVcjPU9AISy3KTMtMTdFU8E1MzsjMS1XwSU0sysvMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjEwtLExMzA3MjY-JUAQCBDTZN</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Crook, Tonicha</creator><creator>Morgan, Jay</creator><creator>Pauly, Arno</creator><creator>Roggenbach, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210212</creationdate><title>A Computability Perspective on (Verified) Machine Learning</title><author>Crook, Tonicha ; Morgan, Jay ; Pauly, Arno ; Roggenbach, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24894460723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Crook, Tonicha</creatorcontrib><creatorcontrib>Morgan, Jay</creatorcontrib><creatorcontrib>Pauly, Arno</creatorcontrib><creatorcontrib>Roggenbach, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crook, Tonicha</au><au>Morgan, Jay</au><au>Pauly, Arno</au><au>Roggenbach, Markus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Computability Perspective on (Verified) Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2021-02-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>There is a strong consensus that combining the versatility of machine learning with the assurances given by formal verification is highly desirable. It is much less clear what verified machine learning should mean exactly. We consider this question from the (unexpected?) perspective of computable analysis. This allows us to define the computational tasks underlying verified ML in a model-agnostic way, and show that they are in principle computable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2489446072 |
source | Free E- Journals |
subjects | Machine learning |
title | A Computability Perspective on (Verified) Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Computability%20Perspective%20on%20(Verified)%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Crook,%20Tonicha&rft.date=2021-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2489446072%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489446072&rft_id=info:pmid/&rfr_iscdi=true |