Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications

Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2019-08, Vol.71 (8), p.2856-2867
Hauptverfasser: Yan, Xueliang, Zhang, Xiang, Wang, Fei, Stockdale, Taylor, Dzenis, Yuris, Nastasi, Michael, Cui, Bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2867
container_issue 8
container_start_page 2856
container_title JOM (1989)
container_volume 71
creator Yan, Xueliang
Zhang, Xiang
Wang, Fei
Stockdale, Taylor
Dzenis, Yuris
Nastasi, Michael
Cui, Bai
description Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.
doi_str_mv 10.1007/s11837-019-03531-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489362315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489362315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvs-CPJWIWWIlUUKTBbTnIuLmkc7HTIxF8npZXYmO6Ge95X90TRLSX3lJDkIVCasgQTmmHCBKM4OYsmVHCGaSro-bgTnmCesvQyugphS0aIZ3QSfS906W2le-ta5AxaPxZotg89tLa3FSp6gCYg3dYod7lfwItFS7v5wPO2964b0Kxp3BBQOaCi0_4TvTY67DQqbNuDt-0GGefRy75qQHs0b8FvRqbrmlNluI4ujG4C3JzmNHpfzN_yJV6tn57z2QpXTMgex4SABEMZq2swokwh1TyrYwNSyhoYl1TGomSpEJxmFZcsA0NKXicVLQkxbBrdHXM77772EHq1dXvfjpUq5mnGZMyoGK_i41XlXQgejOq83Wk_KErUQbQ6ilajaPUrWiUjxI5Q6A4fg_-L_of6Adi7gTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489362315</pqid></control><display><type>article</type><title>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Xueliang ; Zhang, Xiang ; Wang, Fei ; Stockdale, Taylor ; Dzenis, Yuris ; Nastasi, Michael ; Cui, Bai</creator><creatorcontrib>Yan, Xueliang ; Zhang, Xiang ; Wang, Fei ; Stockdale, Taylor ; Dzenis, Yuris ; Nastasi, Michael ; Cui, Bai</creatorcontrib><description>Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03531-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Manufacturing for Nuclear Energy ; Alloy powders ; Alloys ; Atomizing ; Austenitic stainless steels ; Chemistry/Food Science ; Chromium ; Dispersion hardening alloys ; Dispersion hardening steels ; Dispersion strengthening ; Earth Sciences ; Electric currents ; Electron backscatter diffraction ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Grain boundaries ; Grain size ; Hardness ; High entropy alloys ; High temperature ; Hot pressing ; Materials selection ; Mechanical alloying ; Mechanical properties ; Microstructure ; Nuclear energy ; Nuclear engineering ; Nuclear reactors ; Particle size ; Particle size distribution ; Physics ; Plasma sintering ; Point defects ; Powder metallurgy ; Precipitates ; R&amp;D ; Radiation ; Reactors ; Research &amp; development ; Spark plasma sintering ; Stainless steel ; Thermal stability ; Titanium ; Transmission electron microscopy</subject><ispartof>JOM (1989), 2019-08, Vol.71 (8), p.2856-2867</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Copyright Springer Nature B.V. Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</citedby><cites>FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</cites><orcidid>0000-0002-0585-6698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03531-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03531-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yan, Xueliang</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Stockdale, Taylor</creatorcontrib><creatorcontrib>Dzenis, Yuris</creatorcontrib><creatorcontrib>Nastasi, Michael</creatorcontrib><creatorcontrib>Cui, Bai</creatorcontrib><title>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.</description><subject>Advanced Manufacturing for Nuclear Energy</subject><subject>Alloy powders</subject><subject>Alloys</subject><subject>Atomizing</subject><subject>Austenitic stainless steels</subject><subject>Chemistry/Food Science</subject><subject>Chromium</subject><subject>Dispersion hardening alloys</subject><subject>Dispersion hardening steels</subject><subject>Dispersion strengthening</subject><subject>Earth Sciences</subject><subject>Electric currents</subject><subject>Electron backscatter diffraction</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Materials selection</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nuclear energy</subject><subject>Nuclear engineering</subject><subject>Nuclear reactors</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Point defects</subject><subject>Powder metallurgy</subject><subject>Precipitates</subject><subject>R&amp;D</subject><subject>Radiation</subject><subject>Reactors</subject><subject>Research &amp; development</subject><subject>Spark plasma sintering</subject><subject>Stainless steel</subject><subject>Thermal stability</subject><subject>Titanium</subject><subject>Transmission electron microscopy</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvs-CPJWIWWIlUUKTBbTnIuLmkc7HTIxF8npZXYmO6Ge95X90TRLSX3lJDkIVCasgQTmmHCBKM4OYsmVHCGaSro-bgTnmCesvQyugphS0aIZ3QSfS906W2le-ta5AxaPxZotg89tLa3FSp6gCYg3dYod7lfwItFS7v5wPO2964b0Kxp3BBQOaCi0_4TvTY67DQqbNuDt-0GGefRy75qQHs0b8FvRqbrmlNluI4ujG4C3JzmNHpfzN_yJV6tn57z2QpXTMgex4SABEMZq2swokwh1TyrYwNSyhoYl1TGomSpEJxmFZcsA0NKXicVLQkxbBrdHXM77772EHq1dXvfjpUq5mnGZMyoGK_i41XlXQgejOq83Wk_KErUQbQ6ilajaPUrWiUjxI5Q6A4fg_-L_of6Adi7gTU</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Yan, Xueliang</creator><creator>Zhang, Xiang</creator><creator>Wang, Fei</creator><creator>Stockdale, Taylor</creator><creator>Dzenis, Yuris</creator><creator>Nastasi, Michael</creator><creator>Cui, Bai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0585-6698</orcidid></search><sort><creationdate>20190801</creationdate><title>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</title><author>Yan, Xueliang ; Zhang, Xiang ; Wang, Fei ; Stockdale, Taylor ; Dzenis, Yuris ; Nastasi, Michael ; Cui, Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advanced Manufacturing for Nuclear Energy</topic><topic>Alloy powders</topic><topic>Alloys</topic><topic>Atomizing</topic><topic>Austenitic stainless steels</topic><topic>Chemistry/Food Science</topic><topic>Chromium</topic><topic>Dispersion hardening alloys</topic><topic>Dispersion hardening steels</topic><topic>Dispersion strengthening</topic><topic>Earth Sciences</topic><topic>Electric currents</topic><topic>Electron backscatter diffraction</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Materials selection</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nuclear energy</topic><topic>Nuclear engineering</topic><topic>Nuclear reactors</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Point defects</topic><topic>Powder metallurgy</topic><topic>Precipitates</topic><topic>R&amp;D</topic><topic>Radiation</topic><topic>Reactors</topic><topic>Research &amp; development</topic><topic>Spark plasma sintering</topic><topic>Stainless steel</topic><topic>Thermal stability</topic><topic>Titanium</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xueliang</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Stockdale, Taylor</creatorcontrib><creatorcontrib>Dzenis, Yuris</creatorcontrib><creatorcontrib>Nastasi, Michael</creatorcontrib><creatorcontrib>Cui, Bai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xueliang</au><au>Zhang, Xiang</au><au>Wang, Fei</au><au>Stockdale, Taylor</au><au>Dzenis, Yuris</au><au>Nastasi, Michael</au><au>Cui, Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>71</volume><issue>8</issue><spage>2856</spage><epage>2867</epage><pages>2856-2867</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03531-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0585-6698</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2019-08, Vol.71 (8), p.2856-2867
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2489362315
source Springer Nature - Complete Springer Journals
subjects Advanced Manufacturing for Nuclear Energy
Alloy powders
Alloys
Atomizing
Austenitic stainless steels
Chemistry/Food Science
Chromium
Dispersion hardening alloys
Dispersion hardening steels
Dispersion strengthening
Earth Sciences
Electric currents
Electron backscatter diffraction
Engineering
Entropy
Environment
Face centered cubic lattice
Grain boundaries
Grain size
Hardness
High entropy alloys
High temperature
Hot pressing
Materials selection
Mechanical alloying
Mechanical properties
Microstructure
Nuclear energy
Nuclear engineering
Nuclear reactors
Particle size
Particle size distribution
Physics
Plasma sintering
Point defects
Powder metallurgy
Precipitates
R&D
Radiation
Reactors
Research & development
Spark plasma sintering
Stainless steel
Thermal stability
Titanium
Transmission electron microscopy
title Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20ODS%20Austenitic%20Steels%20and%20CoCrFeNi%20High-Entropy%20Alloys%20by%20Spark%20Plasma%20Sintering%20for%20Nuclear%20Energy%20Applications&rft.jtitle=JOM%20(1989)&rft.au=Yan,%20Xueliang&rft.date=2019-08-01&rft.volume=71&rft.issue=8&rft.spage=2856&rft.epage=2867&rft.pages=2856-2867&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03531-7&rft_dat=%3Cproquest_cross%3E2489362315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489362315&rft_id=info:pmid/&rfr_iscdi=true