Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications
Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscop...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2019-08, Vol.71 (8), p.2856-2867 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2867 |
---|---|
container_issue | 8 |
container_start_page | 2856 |
container_title | JOM (1989) |
container_volume | 71 |
creator | Yan, Xueliang Zhang, Xiang Wang, Fei Stockdale, Taylor Dzenis, Yuris Nastasi, Michael Cui, Bai |
description | Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness. |
doi_str_mv | 10.1007/s11837-019-03531-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489362315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489362315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvs-CPJWIWWIlUUKTBbTnIuLmkc7HTIxF8npZXYmO6Ge95X90TRLSX3lJDkIVCasgQTmmHCBKM4OYsmVHCGaSro-bgTnmCesvQyugphS0aIZ3QSfS906W2le-ta5AxaPxZotg89tLa3FSp6gCYg3dYod7lfwItFS7v5wPO2964b0Kxp3BBQOaCi0_4TvTY67DQqbNuDt-0GGefRy75qQHs0b8FvRqbrmlNluI4ujG4C3JzmNHpfzN_yJV6tn57z2QpXTMgex4SABEMZq2swokwh1TyrYwNSyhoYl1TGomSpEJxmFZcsA0NKXicVLQkxbBrdHXM77772EHq1dXvfjpUq5mnGZMyoGK_i41XlXQgejOq83Wk_KErUQbQ6ilajaPUrWiUjxI5Q6A4fg_-L_of6Adi7gTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489362315</pqid></control><display><type>article</type><title>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Xueliang ; Zhang, Xiang ; Wang, Fei ; Stockdale, Taylor ; Dzenis, Yuris ; Nastasi, Michael ; Cui, Bai</creator><creatorcontrib>Yan, Xueliang ; Zhang, Xiang ; Wang, Fei ; Stockdale, Taylor ; Dzenis, Yuris ; Nastasi, Michael ; Cui, Bai</creatorcontrib><description>Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03531-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Manufacturing for Nuclear Energy ; Alloy powders ; Alloys ; Atomizing ; Austenitic stainless steels ; Chemistry/Food Science ; Chromium ; Dispersion hardening alloys ; Dispersion hardening steels ; Dispersion strengthening ; Earth Sciences ; Electric currents ; Electron backscatter diffraction ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Grain boundaries ; Grain size ; Hardness ; High entropy alloys ; High temperature ; Hot pressing ; Materials selection ; Mechanical alloying ; Mechanical properties ; Microstructure ; Nuclear energy ; Nuclear engineering ; Nuclear reactors ; Particle size ; Particle size distribution ; Physics ; Plasma sintering ; Point defects ; Powder metallurgy ; Precipitates ; R&D ; Radiation ; Reactors ; Research & development ; Spark plasma sintering ; Stainless steel ; Thermal stability ; Titanium ; Transmission electron microscopy</subject><ispartof>JOM (1989), 2019-08, Vol.71 (8), p.2856-2867</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Copyright Springer Nature B.V. Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</citedby><cites>FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</cites><orcidid>0000-0002-0585-6698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03531-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03531-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yan, Xueliang</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Stockdale, Taylor</creatorcontrib><creatorcontrib>Dzenis, Yuris</creatorcontrib><creatorcontrib>Nastasi, Michael</creatorcontrib><creatorcontrib>Cui, Bai</creatorcontrib><title>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.</description><subject>Advanced Manufacturing for Nuclear Energy</subject><subject>Alloy powders</subject><subject>Alloys</subject><subject>Atomizing</subject><subject>Austenitic stainless steels</subject><subject>Chemistry/Food Science</subject><subject>Chromium</subject><subject>Dispersion hardening alloys</subject><subject>Dispersion hardening steels</subject><subject>Dispersion strengthening</subject><subject>Earth Sciences</subject><subject>Electric currents</subject><subject>Electron backscatter diffraction</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Materials selection</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nuclear energy</subject><subject>Nuclear engineering</subject><subject>Nuclear reactors</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Point defects</subject><subject>Powder metallurgy</subject><subject>Precipitates</subject><subject>R&D</subject><subject>Radiation</subject><subject>Reactors</subject><subject>Research & development</subject><subject>Spark plasma sintering</subject><subject>Stainless steel</subject><subject>Thermal stability</subject><subject>Titanium</subject><subject>Transmission electron microscopy</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhiMEEqXwB5gsMRvs-CPJWIWWIlUUKTBbTnIuLmkc7HTIxF8npZXYmO6Ge95X90TRLSX3lJDkIVCasgQTmmHCBKM4OYsmVHCGaSro-bgTnmCesvQyugphS0aIZ3QSfS906W2le-ta5AxaPxZotg89tLa3FSp6gCYg3dYod7lfwItFS7v5wPO2964b0Kxp3BBQOaCi0_4TvTY67DQqbNuDt-0GGefRy75qQHs0b8FvRqbrmlNluI4ujG4C3JzmNHpfzN_yJV6tn57z2QpXTMgex4SABEMZq2swokwh1TyrYwNSyhoYl1TGomSpEJxmFZcsA0NKXicVLQkxbBrdHXM77772EHq1dXvfjpUq5mnGZMyoGK_i41XlXQgejOq83Wk_KErUQbQ6ilajaPUrWiUjxI5Q6A4fg_-L_of6Adi7gTU</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Yan, Xueliang</creator><creator>Zhang, Xiang</creator><creator>Wang, Fei</creator><creator>Stockdale, Taylor</creator><creator>Dzenis, Yuris</creator><creator>Nastasi, Michael</creator><creator>Cui, Bai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0585-6698</orcidid></search><sort><creationdate>20190801</creationdate><title>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</title><author>Yan, Xueliang ; Zhang, Xiang ; Wang, Fei ; Stockdale, Taylor ; Dzenis, Yuris ; Nastasi, Michael ; Cui, Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-200e6ef133ddef5b8e8a49d2fe666de3461625b3855419c4639ef0b4d7c1b00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advanced Manufacturing for Nuclear Energy</topic><topic>Alloy powders</topic><topic>Alloys</topic><topic>Atomizing</topic><topic>Austenitic stainless steels</topic><topic>Chemistry/Food Science</topic><topic>Chromium</topic><topic>Dispersion hardening alloys</topic><topic>Dispersion hardening steels</topic><topic>Dispersion strengthening</topic><topic>Earth Sciences</topic><topic>Electric currents</topic><topic>Electron backscatter diffraction</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Materials selection</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nuclear energy</topic><topic>Nuclear engineering</topic><topic>Nuclear reactors</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Point defects</topic><topic>Powder metallurgy</topic><topic>Precipitates</topic><topic>R&D</topic><topic>Radiation</topic><topic>Reactors</topic><topic>Research & development</topic><topic>Spark plasma sintering</topic><topic>Stainless steel</topic><topic>Thermal stability</topic><topic>Titanium</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xueliang</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Stockdale, Taylor</creatorcontrib><creatorcontrib>Dzenis, Yuris</creatorcontrib><creatorcontrib>Nastasi, Michael</creatorcontrib><creatorcontrib>Cui, Bai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xueliang</au><au>Zhang, Xiang</au><au>Wang, Fei</au><au>Stockdale, Taylor</au><au>Dzenis, Yuris</au><au>Nastasi, Michael</au><au>Cui, Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>71</volume><issue>8</issue><spage>2856</spage><epage>2867</epage><pages>2856-2867</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Candidate materials for advanced nuclear energy systems, i.e., oxide-dispersion-strengthened (ODS) austenitic steels and CoCrFeNi high-entropy alloys (HEAs), have been fabricated by spark plasma sintering (SPS). Microstructures of ODS alloys have been characterized by transmission electron microscopy and electron backscatter diffraction, revealing that Y-Ti-O particles with an average particle size of 7.6 nm are homogeneously distributed in the austenite steel matrix with an average grain size of 985 nm. The fine microstructure of ODS austenitic steels is thermally stable after annealing at up to 1100°C. The high strength and hardness of ODS austenitic steels may be attributed to grain boundary strengthening as well as dispersion strengthening. The effect of powder processing and SPS parameters on the microstructural formation in CoCrFeNi HEAs has also been investigated. CoCrFeNi HEAs have a single-phase face-centered cubic (FCC) structure and a homogeneous distribution of four metal elements. The mechanical alloying powders have a mixture of FCC and body-centered cubic phases, which is transformed to FCC phase after SPS at 900–1000°C. CoCrFeNi HEAs fabricated from mechanical alloying powders have a smaller grain size and higher concentration of chromium- and oxygen-rich precipitates than those fabricated from gas-atomized powders, resulting in a higher hardness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03531-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0585-6698</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2019-08, Vol.71 (8), p.2856-2867 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2489362315 |
source | Springer Nature - Complete Springer Journals |
subjects | Advanced Manufacturing for Nuclear Energy Alloy powders Alloys Atomizing Austenitic stainless steels Chemistry/Food Science Chromium Dispersion hardening alloys Dispersion hardening steels Dispersion strengthening Earth Sciences Electric currents Electron backscatter diffraction Engineering Entropy Environment Face centered cubic lattice Grain boundaries Grain size Hardness High entropy alloys High temperature Hot pressing Materials selection Mechanical alloying Mechanical properties Microstructure Nuclear energy Nuclear engineering Nuclear reactors Particle size Particle size distribution Physics Plasma sintering Point defects Powder metallurgy Precipitates R&D Radiation Reactors Research & development Spark plasma sintering Stainless steel Thermal stability Titanium Transmission electron microscopy |
title | Fabrication of ODS Austenitic Steels and CoCrFeNi High-Entropy Alloys by Spark Plasma Sintering for Nuclear Energy Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20ODS%20Austenitic%20Steels%20and%20CoCrFeNi%20High-Entropy%20Alloys%20by%20Spark%20Plasma%20Sintering%20for%20Nuclear%20Energy%20Applications&rft.jtitle=JOM%20(1989)&rft.au=Yan,%20Xueliang&rft.date=2019-08-01&rft.volume=71&rft.issue=8&rft.spage=2856&rft.epage=2867&rft.pages=2856-2867&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03531-7&rft_dat=%3Cproquest_cross%3E2489362315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489362315&rft_id=info:pmid/&rfr_iscdi=true |