Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates

Recognized as a prominent material for engineering applications, carbon fiber-reinforced laminated composites require significant effort to characterize due to their anisotropic structure and viscoelastic nature. Dynamic mechanical analysis has been used to accelerate the testing process by transfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2019-11, Vol.71 (11), p.4015-4023
Hauptverfasser: Xu, Xianbo, Gupta, Nikhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4023
container_issue 11
container_start_page 4015
container_title JOM (1989)
container_volume 71
creator Xu, Xianbo
Gupta, Nikhil
description Recognized as a prominent material for engineering applications, carbon fiber-reinforced laminated composites require significant effort to characterize due to their anisotropic structure and viscoelastic nature. Dynamic mechanical analysis has been used to accelerate the testing process by transforming the measured viscoelastic properties to elastic modulus. To expand the transformation to anisotropic materials, artificial neural network approach is used to build the master relationship of the storage modulus in three in-plane directions. Using rotation transformation, the stiffness tensor can be calculated to extrapolate the frequency domain viscoelastic properties in any orientation with respect to the fiber direction. The viscoelastic properties are transformed to time domain relaxation function using the linear relationship of viscoelasticity. Stress response with a certain strain history is predicted and the elastic modulus is extracted. Compared to the experimental flexural test results, the artificial neural network-based method achieved an error of less than 7.3%. The results show that the transformation can predict the anisotropic material behavior at a wide range of temperatures and strain rates.
doi_str_mv 10.1007/s11837-019-03666-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489353210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489353210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3686719fce8620550edae46bc2d9902b3317e0367e5b33e6aa85799dcfc5bf553</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhTdGE2v1D3gi8YzCsixwbGqrJlUTo2fCsoNS26XCboz_XuyaePM07_C-NzOvKM4puaSEiKtEqWQCE6owYXVdY3FQTCivGKaS08OsSSVwJZk8Lk5SWpMMVYpOinYWe--89WaDHmCI-9F_hviOZrtdDMa-oT6ga-ghbn0HaLExqfcW3Yd22AwJBYfmJjahQ0vfQMRP4DsXooUWrUwmTA_ptDhyZpPg7HdOi5fl4nl-i1ePN3fz2QpbRlWPWS1rQZWzIOuScE6gNVDVjS1bpUjZMEYF5PcE8KyhNkZyoVRrneWN45xNi4sxNx_-MUDq9ToMscsrdVlJxTgrKcmucnTZGFKK4PQu-q2JX5oS_dOmHtvUuU29b1OLDLERStncvUL8i_6H-gZS6Xfu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489353210</pqid></control><display><type>article</type><title>Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates</title><source>SpringerNature Journals</source><creator>Xu, Xianbo ; Gupta, Nikhil</creator><creatorcontrib>Xu, Xianbo ; Gupta, Nikhil</creatorcontrib><description>Recognized as a prominent material for engineering applications, carbon fiber-reinforced laminated composites require significant effort to characterize due to their anisotropic structure and viscoelastic nature. Dynamic mechanical analysis has been used to accelerate the testing process by transforming the measured viscoelastic properties to elastic modulus. To expand the transformation to anisotropic materials, artificial neural network approach is used to build the master relationship of the storage modulus in three in-plane directions. Using rotation transformation, the stiffness tensor can be calculated to extrapolate the frequency domain viscoelastic properties in any orientation with respect to the fiber direction. The viscoelastic properties are transformed to time domain relaxation function using the linear relationship of viscoelasticity. Stress response with a certain strain history is predicted and the elastic modulus is extracted. Compared to the experimental flexural test results, the artificial neural network-based method achieved an error of less than 7.3%. The results show that the transformation can predict the anisotropic material behavior at a wide range of temperatures and strain rates.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-019-03666-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Behavior ; Carbon fiber reinforcement ; Carbon fibers ; Chemistry/Food Science ; Composite materials ; Dynamic mechanical analysis ; Earth Sciences ; Elastic anisotropy ; Elastic properties ; Engineering ; Environment ; Fiber reinforced materials ; Laminar composites ; Laminates ; Mathematical functions ; Modeling and Simulation of Composite Materials ; Modulus of elasticity ; Neural networks ; Optimization ; Physics ; Polymers ; Stiffness ; Storage modulus ; Strain ; Temperature ; Tensors ; Transformations (mathematics) ; Viscoelasticity</subject><ispartof>JOM (1989), 2019-11, Vol.71 (11), p.4015-4023</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Copyright Springer Nature B.V. Nov 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3686719fce8620550edae46bc2d9902b3317e0367e5b33e6aa85799dcfc5bf553</citedby><cites>FETCH-LOGICAL-c319t-3686719fce8620550edae46bc2d9902b3317e0367e5b33e6aa85799dcfc5bf553</cites><orcidid>0000-0003-0487-9748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-019-03666-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-019-03666-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Xianbo</creatorcontrib><creatorcontrib>Gupta, Nikhil</creatorcontrib><title>Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Recognized as a prominent material for engineering applications, carbon fiber-reinforced laminated composites require significant effort to characterize due to their anisotropic structure and viscoelastic nature. Dynamic mechanical analysis has been used to accelerate the testing process by transforming the measured viscoelastic properties to elastic modulus. To expand the transformation to anisotropic materials, artificial neural network approach is used to build the master relationship of the storage modulus in three in-plane directions. Using rotation transformation, the stiffness tensor can be calculated to extrapolate the frequency domain viscoelastic properties in any orientation with respect to the fiber direction. The viscoelastic properties are transformed to time domain relaxation function using the linear relationship of viscoelasticity. Stress response with a certain strain history is predicted and the elastic modulus is extracted. Compared to the experimental flexural test results, the artificial neural network-based method achieved an error of less than 7.3%. The results show that the transformation can predict the anisotropic material behavior at a wide range of temperatures and strain rates.</description><subject>Artificial neural networks</subject><subject>Behavior</subject><subject>Carbon fiber reinforcement</subject><subject>Carbon fibers</subject><subject>Chemistry/Food Science</subject><subject>Composite materials</subject><subject>Dynamic mechanical analysis</subject><subject>Earth Sciences</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Engineering</subject><subject>Environment</subject><subject>Fiber reinforced materials</subject><subject>Laminar composites</subject><subject>Laminates</subject><subject>Mathematical functions</subject><subject>Modeling and Simulation of Composite Materials</subject><subject>Modulus of elasticity</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physics</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Storage modulus</subject><subject>Strain</subject><subject>Temperature</subject><subject>Tensors</subject><subject>Transformations (mathematics)</subject><subject>Viscoelasticity</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPAyEQhTdGE2v1D3gi8YzCsixwbGqrJlUTo2fCsoNS26XCboz_XuyaePM07_C-NzOvKM4puaSEiKtEqWQCE6owYXVdY3FQTCivGKaS08OsSSVwJZk8Lk5SWpMMVYpOinYWe--89WaDHmCI-9F_hviOZrtdDMa-oT6ga-ghbn0HaLExqfcW3Yd22AwJBYfmJjahQ0vfQMRP4DsXooUWrUwmTA_ptDhyZpPg7HdOi5fl4nl-i1ePN3fz2QpbRlWPWS1rQZWzIOuScE6gNVDVjS1bpUjZMEYF5PcE8KyhNkZyoVRrneWN45xNi4sxNx_-MUDq9ToMscsrdVlJxTgrKcmucnTZGFKK4PQu-q2JX5oS_dOmHtvUuU29b1OLDLERStncvUL8i_6H-gZS6Xfu</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Xu, Xianbo</creator><creator>Gupta, Nikhil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-0487-9748</orcidid></search><sort><creationdate>20191101</creationdate><title>Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates</title><author>Xu, Xianbo ; Gupta, Nikhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3686719fce8620550edae46bc2d9902b3317e0367e5b33e6aa85799dcfc5bf553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Behavior</topic><topic>Carbon fiber reinforcement</topic><topic>Carbon fibers</topic><topic>Chemistry/Food Science</topic><topic>Composite materials</topic><topic>Dynamic mechanical analysis</topic><topic>Earth Sciences</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Engineering</topic><topic>Environment</topic><topic>Fiber reinforced materials</topic><topic>Laminar composites</topic><topic>Laminates</topic><topic>Mathematical functions</topic><topic>Modeling and Simulation of Composite Materials</topic><topic>Modulus of elasticity</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physics</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Storage modulus</topic><topic>Strain</topic><topic>Temperature</topic><topic>Tensors</topic><topic>Transformations (mathematics)</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xianbo</creatorcontrib><creatorcontrib>Gupta, Nikhil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xianbo</au><au>Gupta, Nikhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>71</volume><issue>11</issue><spage>4015</spage><epage>4023</epage><pages>4015-4023</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Recognized as a prominent material for engineering applications, carbon fiber-reinforced laminated composites require significant effort to characterize due to their anisotropic structure and viscoelastic nature. Dynamic mechanical analysis has been used to accelerate the testing process by transforming the measured viscoelastic properties to elastic modulus. To expand the transformation to anisotropic materials, artificial neural network approach is used to build the master relationship of the storage modulus in three in-plane directions. Using rotation transformation, the stiffness tensor can be calculated to extrapolate the frequency domain viscoelastic properties in any orientation with respect to the fiber direction. The viscoelastic properties are transformed to time domain relaxation function using the linear relationship of viscoelasticity. Stress response with a certain strain history is predicted and the elastic modulus is extracted. Compared to the experimental flexural test results, the artificial neural network-based method achieved an error of less than 7.3%. The results show that the transformation can predict the anisotropic material behavior at a wide range of temperatures and strain rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-019-03666-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0487-9748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2019-11, Vol.71 (11), p.4015-4023
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2489353210
source SpringerNature Journals
subjects Artificial neural networks
Behavior
Carbon fiber reinforcement
Carbon fibers
Chemistry/Food Science
Composite materials
Dynamic mechanical analysis
Earth Sciences
Elastic anisotropy
Elastic properties
Engineering
Environment
Fiber reinforced materials
Laminar composites
Laminates
Mathematical functions
Modeling and Simulation of Composite Materials
Modulus of elasticity
Neural networks
Optimization
Physics
Polymers
Stiffness
Storage modulus
Strain
Temperature
Tensors
Transformations (mathematics)
Viscoelasticity
title Artificial Neural Network Approach to Determine Elastic Modulus of Carbon Fiber-Reinforced Laminates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20Approach%20to%20Determine%20Elastic%20Modulus%20of%20Carbon%20Fiber-Reinforced%20Laminates&rft.jtitle=JOM%20(1989)&rft.au=Xu,%20Xianbo&rft.date=2019-11-01&rft.volume=71&rft.issue=11&rft.spage=4015&rft.epage=4023&rft.pages=4015-4023&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-019-03666-7&rft_dat=%3Cproquest_cross%3E2489353210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489353210&rft_id=info:pmid/&rfr_iscdi=true