Mapping of morbidity pattern of respiratory diseases: medical block analysis in the northern belt of India

The present study aims to evaluate the burden of respiratory diseases in geographic information system (GIS)—a block level analysis. The study is based on retrospective analysis of data from medical records obtained from Directorate of health services Kashmir, integrated disease surveillance program...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GeoJournal 2021-02, Vol.86 (1), p.455-474
Hauptverfasser: Wani, Manzoor A., Kawoosa, Waseem, Mayer, Ishtiaq A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 1
container_start_page 455
container_title GeoJournal
container_volume 86
creator Wani, Manzoor A.
Kawoosa, Waseem
Mayer, Ishtiaq A.
description The present study aims to evaluate the burden of respiratory diseases in geographic information system (GIS)—a block level analysis. The study is based on retrospective analysis of data from medical records obtained from Directorate of health services Kashmir, integrated disease surveillance program, and clinically investigated data from one of the clinic (chest hospital) managing respiratory diseases in the summer capital of the state J&K—India from 2013 to 2017. Morbidity frequency measures were used to find the population at risk i.e. incidence rate per thousand of the total population and prevalence per hundred of the total population, with spatial temporal changes in the incidence rate from the year 2013 to 2017. Normal standard score or Z value was carried to estimate the average magnitude of respiratory diseases in the study area. Kendal’s ranking and composite index techniques were used to estimate the intensity of respiratory diseases both disease and area wise. The results obtained were shown in a GIS environment using Arc GIS software 10.2. The outcome of this research will be effectively used in epidemiological planning to lessen the burden of respiratory diseases.
doi_str_mv 10.1007/s10708-019-10065-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489116438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290162962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4b8b2d5b8841fbbb8b5cc2af9375043701959854dbe9955e40dad24ddb2b2f323</originalsourceid><addsrcrecordid>eNp9UDtPwzAYtBBIlMIfYLLEHPAzjtlQxaNSEQvMlh07xSVNgu0O-fc4BImt0-k-3Z3uOwCuMbrFCIm7iJFAVYGwLDIveSFOwAJzQQpZSXoKFogyWhBO8Dm4iHGHEJJC4AXYveph8N0W9g3c98F469MIB52SC910DC4OPujUhxFaH52OLt7DvbO-1i00bV9_Qd3pdow-Qt_B9Olg14cM2W9cm6aQdWe9vgRnjW6ju_rDJfh4enxfvRSbt-f16mFT1JSJVDBTGWK5qSqGG2My43VNdCOp4IhRkX_ksuLMGicl544hqy1h1hpiSEMJXYKbOXcI_ffBxaR2_SHkilERVkmMS0aroyoiES6JLKcsMqvq0McYXKOG4Pc6jAojNS2v5uVVbqV-l1cim-hsilncbV34jz7i-gEADYaP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290162962</pqid></control><display><type>article</type><title>Mapping of morbidity pattern of respiratory diseases: medical block analysis in the northern belt of India</title><source>SpringerNature Journals</source><creator>Wani, Manzoor A. ; Kawoosa, Waseem ; Mayer, Ishtiaq A.</creator><creatorcontrib>Wani, Manzoor A. ; Kawoosa, Waseem ; Mayer, Ishtiaq A.</creatorcontrib><description>The present study aims to evaluate the burden of respiratory diseases in geographic information system (GIS)—a block level analysis. The study is based on retrospective analysis of data from medical records obtained from Directorate of health services Kashmir, integrated disease surveillance program, and clinically investigated data from one of the clinic (chest hospital) managing respiratory diseases in the summer capital of the state J&amp;K—India from 2013 to 2017. Morbidity frequency measures were used to find the population at risk i.e. incidence rate per thousand of the total population and prevalence per hundred of the total population, with spatial temporal changes in the incidence rate from the year 2013 to 2017. Normal standard score or Z value was carried to estimate the average magnitude of respiratory diseases in the study area. Kendal’s ranking and composite index techniques were used to estimate the intensity of respiratory diseases both disease and area wise. The results obtained were shown in a GIS environment using Arc GIS software 10.2. The outcome of this research will be effectively used in epidemiological planning to lessen the burden of respiratory diseases.</description><identifier>ISSN: 0343-2521</identifier><identifier>EISSN: 1572-9893</identifier><identifier>DOI: 10.1007/s10708-019-10065-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; At risk populations ; Chest ; Diseases ; Environmental Management ; Epidemiology ; Geographic information systems ; Geographical information systems ; Geography ; Health services ; Human Geography ; Incidence ; Information systems ; Mapping ; Medical records ; Morbidity ; Ratings &amp; rankings ; Remote sensing ; Respiration ; Respiratory diseases ; Respiratory disorders ; Social Sciences ; Standard scores ; Summer ; Surveillance systems ; Temporal variations</subject><ispartof>GeoJournal, 2021-02, Vol.86 (1), p.455-474</ispartof><rights>Springer Nature B.V. 2019</rights><rights>GeoJournal is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4b8b2d5b8841fbbb8b5cc2af9375043701959854dbe9955e40dad24ddb2b2f323</citedby><cites>FETCH-LOGICAL-c347t-4b8b2d5b8841fbbb8b5cc2af9375043701959854dbe9955e40dad24ddb2b2f323</cites><orcidid>0000-0001-6727-7010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10708-019-10065-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10708-019-10065-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wani, Manzoor A.</creatorcontrib><creatorcontrib>Kawoosa, Waseem</creatorcontrib><creatorcontrib>Mayer, Ishtiaq A.</creatorcontrib><title>Mapping of morbidity pattern of respiratory diseases: medical block analysis in the northern belt of India</title><title>GeoJournal</title><addtitle>GeoJournal</addtitle><description>The present study aims to evaluate the burden of respiratory diseases in geographic information system (GIS)—a block level analysis. The study is based on retrospective analysis of data from medical records obtained from Directorate of health services Kashmir, integrated disease surveillance program, and clinically investigated data from one of the clinic (chest hospital) managing respiratory diseases in the summer capital of the state J&amp;K—India from 2013 to 2017. Morbidity frequency measures were used to find the population at risk i.e. incidence rate per thousand of the total population and prevalence per hundred of the total population, with spatial temporal changes in the incidence rate from the year 2013 to 2017. Normal standard score or Z value was carried to estimate the average magnitude of respiratory diseases in the study area. Kendal’s ranking and composite index techniques were used to estimate the intensity of respiratory diseases both disease and area wise. The results obtained were shown in a GIS environment using Arc GIS software 10.2. The outcome of this research will be effectively used in epidemiological planning to lessen the burden of respiratory diseases.</description><subject>Analysis</subject><subject>At risk populations</subject><subject>Chest</subject><subject>Diseases</subject><subject>Environmental Management</subject><subject>Epidemiology</subject><subject>Geographic information systems</subject><subject>Geographical information systems</subject><subject>Geography</subject><subject>Health services</subject><subject>Human Geography</subject><subject>Incidence</subject><subject>Information systems</subject><subject>Mapping</subject><subject>Medical records</subject><subject>Morbidity</subject><subject>Ratings &amp; rankings</subject><subject>Remote sensing</subject><subject>Respiration</subject><subject>Respiratory diseases</subject><subject>Respiratory disorders</subject><subject>Social Sciences</subject><subject>Standard scores</subject><subject>Summer</subject><subject>Surveillance systems</subject><subject>Temporal variations</subject><issn>0343-2521</issn><issn>1572-9893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UDtPwzAYtBBIlMIfYLLEHPAzjtlQxaNSEQvMlh07xSVNgu0O-fc4BImt0-k-3Z3uOwCuMbrFCIm7iJFAVYGwLDIveSFOwAJzQQpZSXoKFogyWhBO8Dm4iHGHEJJC4AXYveph8N0W9g3c98F469MIB52SC910DC4OPujUhxFaH52OLt7DvbO-1i00bV9_Qd3pdow-Qt_B9Olg14cM2W9cm6aQdWe9vgRnjW6ju_rDJfh4enxfvRSbt-f16mFT1JSJVDBTGWK5qSqGG2My43VNdCOp4IhRkX_ksuLMGicl544hqy1h1hpiSEMJXYKbOXcI_ffBxaR2_SHkilERVkmMS0aroyoiES6JLKcsMqvq0McYXKOG4Pc6jAojNS2v5uVVbqV-l1cim-hsilncbV34jz7i-gEADYaP</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wani, Manzoor A.</creator><creator>Kawoosa, Waseem</creator><creator>Mayer, Ishtiaq A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6727-7010</orcidid></search><sort><creationdate>20210201</creationdate><title>Mapping of morbidity pattern of respiratory diseases: medical block analysis in the northern belt of India</title><author>Wani, Manzoor A. ; Kawoosa, Waseem ; Mayer, Ishtiaq A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4b8b2d5b8841fbbb8b5cc2af9375043701959854dbe9955e40dad24ddb2b2f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>At risk populations</topic><topic>Chest</topic><topic>Diseases</topic><topic>Environmental Management</topic><topic>Epidemiology</topic><topic>Geographic information systems</topic><topic>Geographical information systems</topic><topic>Geography</topic><topic>Health services</topic><topic>Human Geography</topic><topic>Incidence</topic><topic>Information systems</topic><topic>Mapping</topic><topic>Medical records</topic><topic>Morbidity</topic><topic>Ratings &amp; rankings</topic><topic>Remote sensing</topic><topic>Respiration</topic><topic>Respiratory diseases</topic><topic>Respiratory disorders</topic><topic>Social Sciences</topic><topic>Standard scores</topic><topic>Summer</topic><topic>Surveillance systems</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wani, Manzoor A.</creatorcontrib><creatorcontrib>Kawoosa, Waseem</creatorcontrib><creatorcontrib>Mayer, Ishtiaq A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>GeoJournal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wani, Manzoor A.</au><au>Kawoosa, Waseem</au><au>Mayer, Ishtiaq A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping of morbidity pattern of respiratory diseases: medical block analysis in the northern belt of India</atitle><jtitle>GeoJournal</jtitle><stitle>GeoJournal</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>86</volume><issue>1</issue><spage>455</spage><epage>474</epage><pages>455-474</pages><issn>0343-2521</issn><eissn>1572-9893</eissn><abstract>The present study aims to evaluate the burden of respiratory diseases in geographic information system (GIS)—a block level analysis. The study is based on retrospective analysis of data from medical records obtained from Directorate of health services Kashmir, integrated disease surveillance program, and clinically investigated data from one of the clinic (chest hospital) managing respiratory diseases in the summer capital of the state J&amp;K—India from 2013 to 2017. Morbidity frequency measures were used to find the population at risk i.e. incidence rate per thousand of the total population and prevalence per hundred of the total population, with spatial temporal changes in the incidence rate from the year 2013 to 2017. Normal standard score or Z value was carried to estimate the average magnitude of respiratory diseases in the study area. Kendal’s ranking and composite index techniques were used to estimate the intensity of respiratory diseases both disease and area wise. The results obtained were shown in a GIS environment using Arc GIS software 10.2. The outcome of this research will be effectively used in epidemiological planning to lessen the burden of respiratory diseases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10708-019-10065-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6727-7010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0343-2521
ispartof GeoJournal, 2021-02, Vol.86 (1), p.455-474
issn 0343-2521
1572-9893
language eng
recordid cdi_proquest_journals_2489116438
source SpringerNature Journals
subjects Analysis
At risk populations
Chest
Diseases
Environmental Management
Epidemiology
Geographic information systems
Geographical information systems
Geography
Health services
Human Geography
Incidence
Information systems
Mapping
Medical records
Morbidity
Ratings & rankings
Remote sensing
Respiration
Respiratory diseases
Respiratory disorders
Social Sciences
Standard scores
Summer
Surveillance systems
Temporal variations
title Mapping of morbidity pattern of respiratory diseases: medical block analysis in the northern belt of India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20of%20morbidity%20pattern%20of%20respiratory%20diseases:%20medical%20block%20analysis%20in%20the%20northern%20belt%20of%20India&rft.jtitle=GeoJournal&rft.au=Wani,%20Manzoor%20A.&rft.date=2021-02-01&rft.volume=86&rft.issue=1&rft.spage=455&rft.epage=474&rft.pages=455-474&rft.issn=0343-2521&rft.eissn=1572-9893&rft_id=info:doi/10.1007/s10708-019-10065-7&rft_dat=%3Cproquest_cross%3E2290162962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290162962&rft_id=info:pmid/&rfr_iscdi=true