On sensitivity of the stability of equilibrium points with respect to the perturbations
The present investigation considers the effect of small perturbations given in the Coriolis and centrifugal forces on the location and stability of the equilibrium points in the Robe’s circular restricted three-body problem with non-spherical primary bodies. The felicitous equations of motion of m 3...
Gespeichert in:
Veröffentlicht in: | Journal of astrophysics and astronomy 2021-12, Vol.42 (1), Article 4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of astrophysics and astronomy |
container_volume | 42 |
creator | Kaur, Bhavneet Chauhan, Shipra Kumar, Dinesh |
description | The present investigation considers the effect of small perturbations given in the Coriolis and centrifugal forces on the location and stability of the equilibrium points in the Robe’s circular restricted three-body problem with non-spherical primary bodies. The felicitous equations of motion of
m
3
are obtained by taking into account the shapes of primaries
m
1
and
m
2
, the full buoyancy force of the fluid which is filled inside
m
1
of density
ρ
1
, the forces due to the gravitational attraction of the fluid and
m
2
. We assume that the massive body
m
1
is an oblate spheroid and the
m
2
a finite straight segment, and they move under a mutual gravitational attraction described by the Newton’s universal law of gravitation. In the present problem,
m
3
is moving in the fluid and the rotating reference frame is used, its motion is bound to be affected by the perturbed Coriolis and centrifugal forces. In this attempt these effects along with the effects caused by the oblateness and length parameters
A
and
l
respectively, on the location and stability of the equilibrium points are observed. A pair of collinear equilibrium points
L
1
and
L
2
and infinite number of non-collinear equilibrium points are obtained. The stability of all the equilibrium points depends on the coefficients of their corresponding characteristic polynomials that are obtained with the help of linear variational equations. |
doi_str_mv | 10.1007/s12036-020-09650-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489092042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489092042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a522cec23da5d41725828727ce37bbdce0c55600808200f2bd5d451ac764f5743</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeAz9Wbm6ZpH2WoEwZ7UXwMbZq6jK3tklS3f29cB775dA-H75wLh5BbBvcMQD54hsCzBBASKDIByf6MTKCQPJFS5OdRYzQzzsUlufJ-DcCKFIsJ-Vi21JvW22C_bDjQrqFhZagPZWU3J8PshqgrZ4ct7TvbBk-_bVhRZ3xvdKChO2Z648LgqjLYrvXX5KIpN97cnO6UvD8_vc3myWL58jp7XCSasyIkpUDURiOvS1GnTKLIMZcoteGyqmptQAuRAeSQI0CDVR0xwUots7QRMuVTcjf29q7bDcYHte4G18aXCtO8gAIhxUjhSGnXee9Mo3pnt6U7KAbqd0A1DqjigOo4oNrHEB9DPsLtp3F_1f-kfgDyvHS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489092042</pqid></control><display><type>article</type><title>On sensitivity of the stability of equilibrium points with respect to the perturbations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><creator>Kaur, Bhavneet ; Chauhan, Shipra ; Kumar, Dinesh</creator><creatorcontrib>Kaur, Bhavneet ; Chauhan, Shipra ; Kumar, Dinesh</creatorcontrib><description>The present investigation considers the effect of small perturbations given in the Coriolis and centrifugal forces on the location and stability of the equilibrium points in the Robe’s circular restricted three-body problem with non-spherical primary bodies. The felicitous equations of motion of
m
3
are obtained by taking into account the shapes of primaries
m
1
and
m
2
, the full buoyancy force of the fluid which is filled inside
m
1
of density
ρ
1
, the forces due to the gravitational attraction of the fluid and
m
2
. We assume that the massive body
m
1
is an oblate spheroid and the
m
2
a finite straight segment, and they move under a mutual gravitational attraction described by the Newton’s universal law of gravitation. In the present problem,
m
3
is moving in the fluid and the rotating reference frame is used, its motion is bound to be affected by the perturbed Coriolis and centrifugal forces. In this attempt these effects along with the effects caused by the oblateness and length parameters
A
and
l
respectively, on the location and stability of the equilibrium points are observed. A pair of collinear equilibrium points
L
1
and
L
2
and infinite number of non-collinear equilibrium points are obtained. The stability of all the equilibrium points depends on the coefficients of their corresponding characteristic polynomials that are obtained with the help of linear variational equations.</description><identifier>ISSN: 0250-6335</identifier><identifier>EISSN: 0973-7758</identifier><identifier>DOI: 10.1007/s12036-020-09650-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Attraction ; Centrifugal force ; Coriolis force ; Equations of motion ; Equilibrium ; Gravitation ; Mathematical analysis ; Observations and Techniques ; Perturbation ; Physics ; Physics and Astronomy ; Polynomials ; Rotating fluids ; Stability ; Three body problem</subject><ispartof>Journal of astrophysics and astronomy, 2021-12, Vol.42 (1), Article 4</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a522cec23da5d41725828727ce37bbdce0c55600808200f2bd5d451ac764f5743</citedby><cites>FETCH-LOGICAL-c319t-a522cec23da5d41725828727ce37bbdce0c55600808200f2bd5d451ac764f5743</cites><orcidid>0000-0001-9900-149X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12036-020-09650-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12036-020-09650-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kaur, Bhavneet</creatorcontrib><creatorcontrib>Chauhan, Shipra</creatorcontrib><creatorcontrib>Kumar, Dinesh</creatorcontrib><title>On sensitivity of the stability of equilibrium points with respect to the perturbations</title><title>Journal of astrophysics and astronomy</title><addtitle>J Astrophys Astron</addtitle><description>The present investigation considers the effect of small perturbations given in the Coriolis and centrifugal forces on the location and stability of the equilibrium points in the Robe’s circular restricted three-body problem with non-spherical primary bodies. The felicitous equations of motion of
m
3
are obtained by taking into account the shapes of primaries
m
1
and
m
2
, the full buoyancy force of the fluid which is filled inside
m
1
of density
ρ
1
, the forces due to the gravitational attraction of the fluid and
m
2
. We assume that the massive body
m
1
is an oblate spheroid and the
m
2
a finite straight segment, and they move under a mutual gravitational attraction described by the Newton’s universal law of gravitation. In the present problem,
m
3
is moving in the fluid and the rotating reference frame is used, its motion is bound to be affected by the perturbed Coriolis and centrifugal forces. In this attempt these effects along with the effects caused by the oblateness and length parameters
A
and
l
respectively, on the location and stability of the equilibrium points are observed. A pair of collinear equilibrium points
L
1
and
L
2
and infinite number of non-collinear equilibrium points are obtained. The stability of all the equilibrium points depends on the coefficients of their corresponding characteristic polynomials that are obtained with the help of linear variational equations.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Attraction</subject><subject>Centrifugal force</subject><subject>Coriolis force</subject><subject>Equations of motion</subject><subject>Equilibrium</subject><subject>Gravitation</subject><subject>Mathematical analysis</subject><subject>Observations and Techniques</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Rotating fluids</subject><subject>Stability</subject><subject>Three body problem</subject><issn>0250-6335</issn><issn>0973-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeAz9Wbm6ZpH2WoEwZ7UXwMbZq6jK3tklS3f29cB775dA-H75wLh5BbBvcMQD54hsCzBBASKDIByf6MTKCQPJFS5OdRYzQzzsUlufJ-DcCKFIsJ-Vi21JvW22C_bDjQrqFhZagPZWU3J8PshqgrZ4ct7TvbBk-_bVhRZ3xvdKChO2Z648LgqjLYrvXX5KIpN97cnO6UvD8_vc3myWL58jp7XCSasyIkpUDURiOvS1GnTKLIMZcoteGyqmptQAuRAeSQI0CDVR0xwUots7QRMuVTcjf29q7bDcYHte4G18aXCtO8gAIhxUjhSGnXee9Mo3pnt6U7KAbqd0A1DqjigOo4oNrHEB9DPsLtp3F_1f-kfgDyvHS4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kaur, Bhavneet</creator><creator>Chauhan, Shipra</creator><creator>Kumar, Dinesh</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9900-149X</orcidid></search><sort><creationdate>20211201</creationdate><title>On sensitivity of the stability of equilibrium points with respect to the perturbations</title><author>Kaur, Bhavneet ; Chauhan, Shipra ; Kumar, Dinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a522cec23da5d41725828727ce37bbdce0c55600808200f2bd5d451ac764f5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Attraction</topic><topic>Centrifugal force</topic><topic>Coriolis force</topic><topic>Equations of motion</topic><topic>Equilibrium</topic><topic>Gravitation</topic><topic>Mathematical analysis</topic><topic>Observations and Techniques</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Rotating fluids</topic><topic>Stability</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Bhavneet</creatorcontrib><creatorcontrib>Chauhan, Shipra</creatorcontrib><creatorcontrib>Kumar, Dinesh</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of astrophysics and astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Bhavneet</au><au>Chauhan, Shipra</au><au>Kumar, Dinesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sensitivity of the stability of equilibrium points with respect to the perturbations</atitle><jtitle>Journal of astrophysics and astronomy</jtitle><stitle>J Astrophys Astron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>42</volume><issue>1</issue><artnum>4</artnum><issn>0250-6335</issn><eissn>0973-7758</eissn><abstract>The present investigation considers the effect of small perturbations given in the Coriolis and centrifugal forces on the location and stability of the equilibrium points in the Robe’s circular restricted three-body problem with non-spherical primary bodies. The felicitous equations of motion of
m
3
are obtained by taking into account the shapes of primaries
m
1
and
m
2
, the full buoyancy force of the fluid which is filled inside
m
1
of density
ρ
1
, the forces due to the gravitational attraction of the fluid and
m
2
. We assume that the massive body
m
1
is an oblate spheroid and the
m
2
a finite straight segment, and they move under a mutual gravitational attraction described by the Newton’s universal law of gravitation. In the present problem,
m
3
is moving in the fluid and the rotating reference frame is used, its motion is bound to be affected by the perturbed Coriolis and centrifugal forces. In this attempt these effects along with the effects caused by the oblateness and length parameters
A
and
l
respectively, on the location and stability of the equilibrium points are observed. A pair of collinear equilibrium points
L
1
and
L
2
and infinite number of non-collinear equilibrium points are obtained. The stability of all the equilibrium points depends on the coefficients of their corresponding characteristic polynomials that are obtained with the help of linear variational equations.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12036-020-09650-x</doi><orcidid>https://orcid.org/0000-0001-9900-149X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-6335 |
ispartof | Journal of astrophysics and astronomy, 2021-12, Vol.42 (1), Article 4 |
issn | 0250-6335 0973-7758 |
language | eng |
recordid | cdi_proquest_journals_2489092042 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences; Springer Nature - Complete Springer Journals |
subjects | Astronomy Astrophysics and Astroparticles Attraction Centrifugal force Coriolis force Equations of motion Equilibrium Gravitation Mathematical analysis Observations and Techniques Perturbation Physics Physics and Astronomy Polynomials Rotating fluids Stability Three body problem |
title | On sensitivity of the stability of equilibrium points with respect to the perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sensitivity%20of%20the%20stability%20of%20equilibrium%20points%20with%20respect%20to%20the%20perturbations&rft.jtitle=Journal%20of%20astrophysics%20and%20astronomy&rft.au=Kaur,%20Bhavneet&rft.date=2021-12-01&rft.volume=42&rft.issue=1&rft.artnum=4&rft.issn=0250-6335&rft.eissn=0973-7758&rft_id=info:doi/10.1007/s12036-020-09650-x&rft_dat=%3Cproquest_cross%3E2489092042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489092042&rft_id=info:pmid/&rfr_iscdi=true |