Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters

Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2021-02, Vol.147 (2), p.431-479
Hauptverfasser: Baird, Graham, Bürger, Raimund, Méndez, Paul E., Ruiz-Baier, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 431
container_title Numerische Mathematik
container_volume 147
creator Baird, Graham
Bürger, Raimund
Méndez, Paul E.
Ruiz-Baier, Ricardo
description Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models are analysed mathematically, and suitable numerical methods for their approximate solution are designed. The governing equations are the Navier–Stokes–Brinkman equations for the flow of the fluid through a porous medium coupled with a convection-diffusion equation for the transport of the contaminants plus a system of ordinary differential equations accounting for the degradation of the adsorption properties of each contaminant. These equations are written in meridional axisymmetric form and the corresponding weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of this problem is introduced and the solvability, stability, and spatio-temporal convergence of the numerical method are analysed. Some numerical examples illustrate the main features of the problem and the properties of the numerical scheme.
doi_str_mv 10.1007/s00211-020-01169-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489088003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489088003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-68aeaf3826e5e893201bce492c220203c622f8a3024eee0723b9d6665d53c9a73</originalsourceid><addsrcrecordid>eNp9UDtOAzEUXCGQCIELUFmiNjzb-3MJET8pgiIg0VmO923YJGsn9gZIxx24ISfBsEh0VDPFfDSTJMcMThlAcRYAOGMUOFBgLJeU7SQDkGlGBU-z3ciBS5pJ-bSfHIQwB2BFnrJBspqgcbaizlfoSTDP2GIgtfNEvzVh27bY-caQO_3SoP98_5h0boEhkgvf2EWrLdG2Ip3XNqyc7wiuN7prnA2kdRUul42dkVfdxey6WUYIh8lerZcBj35xmDxeXT6Mbuj4_vp2dD6mRjDZ0bzUqGtR8hwzLKXgwKYGU8kN53GlMDnndakF8BQRoeBiKqs8z7MqE0bqQgyTkz535d16g6FTc7fxNlYqnpYSyhJARBXvVca7EDzWauWbVvutYqC-n1X9syp2qp9nFYsm0ZtCFNsZ-r_of1xfORB_Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489088003</pqid></control><display><type>article</type><title>Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters</title><source>SpringerNature Journals</source><creator>Baird, Graham ; Bürger, Raimund ; Méndez, Paul E. ; Ruiz-Baier, Ricardo</creator><creatorcontrib>Baird, Graham ; Bürger, Raimund ; Méndez, Paul E. ; Ruiz-Baier, Ricardo</creatorcontrib><description>Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models are analysed mathematically, and suitable numerical methods for their approximate solution are designed. The governing equations are the Navier–Stokes–Brinkman equations for the flow of the fluid through a porous medium coupled with a convection-diffusion equation for the transport of the contaminants plus a system of ordinary differential equations accounting for the degradation of the adsorption properties of each contaminant. These equations are written in meridional axisymmetric form and the corresponding weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of this problem is introduced and the solvability, stability, and spatio-temporal convergence of the numerical method are analysed. Some numerical examples illustrate the main features of the problem and the properties of the numerical scheme.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-020-01169-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Approximation ; Computational fluid dynamics ; Contaminants ; Convection-diffusion equation ; Differential equations ; Divergence ; Fluid filters ; Fluid flow ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Numerical Analysis ; Numerical and Computational Physics ; Numerical methods ; Ordinary differential equations ; Porous media ; Simulation ; Soil analysis ; Soil contamination ; Soil water ; Soils ; Stability analysis ; Theoretical ; Transport equations ; Viscous flow ; Water purification</subject><ispartof>Numerische Mathematik, 2021-02, Vol.147 (2), p.431-479</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-68aeaf3826e5e893201bce492c220203c622f8a3024eee0723b9d6665d53c9a73</citedby><cites>FETCH-LOGICAL-c319t-68aeaf3826e5e893201bce492c220203c622f8a3024eee0723b9d6665d53c9a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-020-01169-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-020-01169-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baird, Graham</creatorcontrib><creatorcontrib>Bürger, Raimund</creatorcontrib><creatorcontrib>Méndez, Paul E.</creatorcontrib><creatorcontrib>Ruiz-Baier, Ricardo</creatorcontrib><title>Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models are analysed mathematically, and suitable numerical methods for their approximate solution are designed. The governing equations are the Navier–Stokes–Brinkman equations for the flow of the fluid through a porous medium coupled with a convection-diffusion equation for the transport of the contaminants plus a system of ordinary differential equations accounting for the degradation of the adsorption properties of each contaminant. These equations are written in meridional axisymmetric form and the corresponding weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of this problem is introduced and the solvability, stability, and spatio-temporal convergence of the numerical method are analysed. Some numerical examples illustrate the main features of the problem and the properties of the numerical scheme.</description><subject>Adsorption</subject><subject>Approximation</subject><subject>Computational fluid dynamics</subject><subject>Contaminants</subject><subject>Convection-diffusion equation</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Fluid filters</subject><subject>Fluid flow</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Numerical methods</subject><subject>Ordinary differential equations</subject><subject>Porous media</subject><subject>Simulation</subject><subject>Soil analysis</subject><subject>Soil contamination</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stability analysis</subject><subject>Theoretical</subject><subject>Transport equations</subject><subject>Viscous flow</subject><subject>Water purification</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UDtOAzEUXCGQCIELUFmiNjzb-3MJET8pgiIg0VmO923YJGsn9gZIxx24ISfBsEh0VDPFfDSTJMcMThlAcRYAOGMUOFBgLJeU7SQDkGlGBU-z3ciBS5pJ-bSfHIQwB2BFnrJBspqgcbaizlfoSTDP2GIgtfNEvzVh27bY-caQO_3SoP98_5h0boEhkgvf2EWrLdG2Ip3XNqyc7wiuN7prnA2kdRUul42dkVfdxey6WUYIh8lerZcBj35xmDxeXT6Mbuj4_vp2dD6mRjDZ0bzUqGtR8hwzLKXgwKYGU8kN53GlMDnndakF8BQRoeBiKqs8z7MqE0bqQgyTkz535d16g6FTc7fxNlYqnpYSyhJARBXvVca7EDzWauWbVvutYqC-n1X9syp2qp9nFYsm0ZtCFNsZ-r_of1xfORB_Yg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Baird, Graham</creator><creator>Bürger, Raimund</creator><creator>Méndez, Paul E.</creator><creator>Ruiz-Baier, Ricardo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters</title><author>Baird, Graham ; Bürger, Raimund ; Méndez, Paul E. ; Ruiz-Baier, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-68aeaf3826e5e893201bce492c220203c622f8a3024eee0723b9d6665d53c9a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Approximation</topic><topic>Computational fluid dynamics</topic><topic>Contaminants</topic><topic>Convection-diffusion equation</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Fluid filters</topic><topic>Fluid flow</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Numerical methods</topic><topic>Ordinary differential equations</topic><topic>Porous media</topic><topic>Simulation</topic><topic>Soil analysis</topic><topic>Soil contamination</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stability analysis</topic><topic>Theoretical</topic><topic>Transport equations</topic><topic>Viscous flow</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baird, Graham</creatorcontrib><creatorcontrib>Bürger, Raimund</creatorcontrib><creatorcontrib>Méndez, Paul E.</creatorcontrib><creatorcontrib>Ruiz-Baier, Ricardo</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baird, Graham</au><au>Bürger, Raimund</au><au>Méndez, Paul E.</au><au>Ruiz-Baier, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>147</volume><issue>2</issue><spage>431</spage><epage>479</epage><pages>431-479</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Soil-based water filtering devices can be described by models of viscous flow in porous media coupled with an advection–diffusion–reaction system modelling the transport of distinct contaminant species within water, and being susceptible to adsorption in the medium that represents soil. Such models are analysed mathematically, and suitable numerical methods for their approximate solution are designed. The governing equations are the Navier–Stokes–Brinkman equations for the flow of the fluid through a porous medium coupled with a convection-diffusion equation for the transport of the contaminants plus a system of ordinary differential equations accounting for the degradation of the adsorption properties of each contaminant. These equations are written in meridional axisymmetric form and the corresponding weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of this problem is introduced and the solvability, stability, and spatio-temporal convergence of the numerical method are analysed. Some numerical examples illustrate the main features of the problem and the properties of the numerical scheme.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-020-01169-1</doi><tpages>49</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2021-02, Vol.147 (2), p.431-479
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2489088003
source SpringerNature Journals
subjects Adsorption
Approximation
Computational fluid dynamics
Contaminants
Convection-diffusion equation
Differential equations
Divergence
Fluid filters
Fluid flow
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Numerical Analysis
Numerical and Computational Physics
Numerical methods
Ordinary differential equations
Porous media
Simulation
Soil analysis
Soil contamination
Soil water
Soils
Stability analysis
Theoretical
Transport equations
Viscous flow
Water purification
title Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20schemes%20for%20axisymmetric%20Navier%E2%80%93Stokes%E2%80%93Brinkman%20and%20transport%20equations%20modelling%20water%20filters&rft.jtitle=Numerische%20Mathematik&rft.au=Baird,%20Graham&rft.date=2021-02-01&rft.volume=147&rft.issue=2&rft.spage=431&rft.epage=479&rft.pages=431-479&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-020-01169-1&rft_dat=%3Cproquest_cross%3E2489088003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489088003&rft_id=info:pmid/&rfr_iscdi=true