Image Matching Across Wide Baselines: From Paper to Practice

We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task—the accuracy of the reconstructed camera pose—as our primary metric. Our pipeline’s modular structure allows easy integration, configuration, and combination of different metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2021-02, Vol.129 (2), p.517-547
Hauptverfasser: Jin, Yuhe, Mishkin, Dmytro, Mishchuk, Anastasiia, Matas, Jiri, Fua, Pascal, Yi, Kwang Moo, Trulls, Eduard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 2
container_start_page 517
container_title International journal of computer vision
container_volume 129
creator Jin, Yuhe
Mishkin, Dmytro
Mishchuk, Anastasiia
Matas, Jiri
Fua, Pascal
Yi, Kwang Moo
Trulls, Eduard
description We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task—the accuracy of the reconstructed camera pose—as our primary metric. Our pipeline’s modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art . Besides establishing the actual state of the art , the conducted experiments reveal unexpected properties of structure from motion pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online ( https://github.com/ubc-vision/image-matching-benchmark ), providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge ( https://image-matching-challenge.github.io ).
doi_str_mv 10.1007/s11263-020-01385-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2489055227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651789904</galeid><sourcerecordid>A651789904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-66ab297e28ab2770067f2b4497a6c82d03120b3f0a0d49a2e8094ab2dc3e895d3</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4MoOKf_gKeCJw-dL0nTNOJlDqcDxeEPPIYsfa0dazuTDvS_N66C7CI5PMj7fPIe-RJySmFEAeSFp5SlPAYGMVCeiRj2yIAKyWOagNgnA1ChJVJFD8mR90sAYBnjA3I1q02J0YPp7HvVlNHYutb76K3KMbo2HldVg_4ymrq2juZmjS7q2mjujO0qi8fkoDArjye_dUhepzcvk7v4_vF2Nhnfx5Yr1sVpahZMSWRZqFICpLJgiyRR0qQ2YzlwymDBCzCQJ8owzEAlAc0tx0yJnA_JWf_u2rUfG_SdXrYb14SRmiWZAiEYk4Ea9VRpVqirpmi7sGc4OdaVbRssqnA_TgWVmVKQBOF8RwhMh59daTbe69nz0y7Lenb7Pw4LvXZVbdyXpqB_ItB9BDpEoLcRaAgS7yUf4KZE97f3P9Y3OpuFSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489055227</pqid></control><display><type>article</type><title>Image Matching Across Wide Baselines: From Paper to Practice</title><source>SpringerNature Journals</source><creator>Jin, Yuhe ; Mishkin, Dmytro ; Mishchuk, Anastasiia ; Matas, Jiri ; Fua, Pascal ; Yi, Kwang Moo ; Trulls, Eduard</creator><creatorcontrib>Jin, Yuhe ; Mishkin, Dmytro ; Mishchuk, Anastasiia ; Matas, Jiri ; Fua, Pascal ; Yi, Kwang Moo ; Trulls, Eduard</creatorcontrib><description>We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task—the accuracy of the reconstructed camera pose—as our primary metric. Our pipeline’s modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art . Besides establishing the actual state of the art , the conducted experiments reveal unexpected properties of structure from motion pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online ( https://github.com/ubc-vision/image-matching-benchmark ), providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge ( https://image-matching-challenge.github.io ).</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-020-01385-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Benchmarks ; Computer Imaging ; Computer Science ; Heuristic methods ; Image Processing and Computer Vision ; Machine learning ; Matching ; Modular structures ; Pattern Recognition ; Pattern Recognition and Graphics ; Robustness ; Special Issue on Performance Evaluation in Computer Vision ; Vision</subject><ispartof>International journal of computer vision, 2021-02, Vol.129 (2), p.517-547</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-66ab297e28ab2770067f2b4497a6c82d03120b3f0a0d49a2e8094ab2dc3e895d3</citedby><cites>FETCH-LOGICAL-c392t-66ab297e28ab2770067f2b4497a6c82d03120b3f0a0d49a2e8094ab2dc3e895d3</cites><orcidid>0000-0002-1425-7881 ; 0000-0001-8205-6718 ; 0000-0003-0863-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-020-01385-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-020-01385-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jin, Yuhe</creatorcontrib><creatorcontrib>Mishkin, Dmytro</creatorcontrib><creatorcontrib>Mishchuk, Anastasiia</creatorcontrib><creatorcontrib>Matas, Jiri</creatorcontrib><creatorcontrib>Fua, Pascal</creatorcontrib><creatorcontrib>Yi, Kwang Moo</creatorcontrib><creatorcontrib>Trulls, Eduard</creatorcontrib><title>Image Matching Across Wide Baselines: From Paper to Practice</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task—the accuracy of the reconstructed camera pose—as our primary metric. Our pipeline’s modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art . Besides establishing the actual state of the art , the conducted experiments reveal unexpected properties of structure from motion pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online ( https://github.com/ubc-vision/image-matching-benchmark ), providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge ( https://image-matching-challenge.github.io ).</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Benchmarks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Heuristic methods</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Modular structures</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Robustness</subject><subject>Special Issue on Performance Evaluation in Computer Vision</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9LwzAUx4MoOKf_gKeCJw-dL0nTNOJlDqcDxeEPPIYsfa0dazuTDvS_N66C7CI5PMj7fPIe-RJySmFEAeSFp5SlPAYGMVCeiRj2yIAKyWOagNgnA1ChJVJFD8mR90sAYBnjA3I1q02J0YPp7HvVlNHYutb76K3KMbo2HldVg_4ymrq2juZmjS7q2mjujO0qi8fkoDArjye_dUhepzcvk7v4_vF2Nhnfx5Yr1sVpahZMSWRZqFICpLJgiyRR0qQ2YzlwymDBCzCQJ8owzEAlAc0tx0yJnA_JWf_u2rUfG_SdXrYb14SRmiWZAiEYk4Ea9VRpVqirpmi7sGc4OdaVbRssqnA_TgWVmVKQBOF8RwhMh59daTbe69nz0y7Lenb7Pw4LvXZVbdyXpqB_ItB9BDpEoLcRaAgS7yUf4KZE97f3P9Y3OpuFSw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Jin, Yuhe</creator><creator>Mishkin, Dmytro</creator><creator>Mishchuk, Anastasiia</creator><creator>Matas, Jiri</creator><creator>Fua, Pascal</creator><creator>Yi, Kwang Moo</creator><creator>Trulls, Eduard</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1425-7881</orcidid><orcidid>https://orcid.org/0000-0001-8205-6718</orcidid><orcidid>https://orcid.org/0000-0003-0863-4844</orcidid></search><sort><creationdate>20210201</creationdate><title>Image Matching Across Wide Baselines: From Paper to Practice</title><author>Jin, Yuhe ; Mishkin, Dmytro ; Mishchuk, Anastasiia ; Matas, Jiri ; Fua, Pascal ; Yi, Kwang Moo ; Trulls, Eduard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-66ab297e28ab2770067f2b4497a6c82d03120b3f0a0d49a2e8094ab2dc3e895d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Benchmarks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Heuristic methods</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Modular structures</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Robustness</topic><topic>Special Issue on Performance Evaluation in Computer Vision</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yuhe</creatorcontrib><creatorcontrib>Mishkin, Dmytro</creatorcontrib><creatorcontrib>Mishchuk, Anastasiia</creatorcontrib><creatorcontrib>Matas, Jiri</creatorcontrib><creatorcontrib>Fua, Pascal</creatorcontrib><creatorcontrib>Yi, Kwang Moo</creatorcontrib><creatorcontrib>Trulls, Eduard</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yuhe</au><au>Mishkin, Dmytro</au><au>Mishchuk, Anastasiia</au><au>Matas, Jiri</au><au>Fua, Pascal</au><au>Yi, Kwang Moo</au><au>Trulls, Eduard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Matching Across Wide Baselines: From Paper to Practice</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>129</volume><issue>2</issue><spage>517</spage><epage>547</epage><pages>517-547</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task—the accuracy of the reconstructed camera pose—as our primary metric. Our pipeline’s modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art . Besides establishing the actual state of the art , the conducted experiments reveal unexpected properties of structure from motion pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online ( https://github.com/ubc-vision/image-matching-benchmark ), providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge ( https://image-matching-challenge.github.io ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-020-01385-0</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-1425-7881</orcidid><orcidid>https://orcid.org/0000-0001-8205-6718</orcidid><orcidid>https://orcid.org/0000-0003-0863-4844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2021-02, Vol.129 (2), p.517-547
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_journals_2489055227
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Benchmarks
Computer Imaging
Computer Science
Heuristic methods
Image Processing and Computer Vision
Machine learning
Matching
Modular structures
Pattern Recognition
Pattern Recognition and Graphics
Robustness
Special Issue on Performance Evaluation in Computer Vision
Vision
title Image Matching Across Wide Baselines: From Paper to Practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Matching%20Across%20Wide%20Baselines:%20From%20Paper%20to%20Practice&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Jin,%20Yuhe&rft.date=2021-02-01&rft.volume=129&rft.issue=2&rft.spage=517&rft.epage=547&rft.pages=517-547&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-020-01385-0&rft_dat=%3Cgale_proqu%3EA651789904%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489055227&rft_id=info:pmid/&rft_galeid=A651789904&rfr_iscdi=true