Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions

[Display omitted] Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-03, Vol.288, p.119729, Article 119729
Hauptverfasser: Ahmadi, Mohammadali, Chen, Zhangxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119729
container_title Fuel (Guildford)
container_volume 288
creator Ahmadi, Mohammadali
Chen, Zhangxin
description [Display omitted] Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants. Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.
doi_str_mv 10.1016/j.fuel.2020.119729
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489026957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120327253</els_id><sourcerecordid>2489026957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF1x3zaJIG3MjgCwbcjOuQprdOSiepSSv4700Z164u9_Cd-zgI3RK8IZiI-37TzTBsKKZZIEpSdYZWpJaslISzc7TCmSopE-QSXaXUY4xlzasV2m_DcYxwAJ_cNxTHMICdBxOLZM2w9C0Mzn8WoSuMd8E7W6Q5dsZOxk-lSePBDBN4KJyfIGY5M-kaXXRmSHDzV9fo4_lpv30td-8vb9vHXWkZraeSSiIa2oi24xaIVS1IyB8oMLzitJFMCiY7QQSmrOIclIGGCQEKsGk7WrE1ujvNHWP4miFNug9z9HmlplWtMBWKy0zRE2VjSClCp8fojib-aIL1kp7u9ZKeXtLTp_Sy6eFkgnz_t4Ook3XgLbQugp10G9x_9l9OPXl_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489026957</pqid></control><display><type>article</type><title>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Ahmadi, Mohammadali ; Chen, Zhangxin</creator><creatorcontrib>Ahmadi, Mohammadali ; Chen, Zhangxin</creatorcontrib><description>[Display omitted] Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants. Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.119729</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Additives ; Anionic surfactant ; Asphaltene ; Asphaltenes ; Benzene ; Bitumens ; Dispersants ; Dispersion ; Distribution functions ; Hydrocarbons ; Hydrogen bonding ; Hydrogen bonds ; Inhibitors ; Interfacial behavior ; Molecular dynamics ; Molecular interactions ; Oil ; Oil recovery ; Oil sands ; Pollutants ; Radial distribution ; Simulation ; Steam ; Surfactants ; Viscosity</subject><ispartof>Fuel (Guildford), 2021-03, Vol.288, p.119729, Article 119729</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</citedby><cites>FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</cites><orcidid>0000-0002-9107-1925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236120327253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ahmadi, Mohammadali</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><title>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</title><title>Fuel (Guildford)</title><description>[Display omitted] Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants. Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.</description><subject>Additives</subject><subject>Anionic surfactant</subject><subject>Asphaltene</subject><subject>Asphaltenes</subject><subject>Benzene</subject><subject>Bitumens</subject><subject>Dispersants</subject><subject>Dispersion</subject><subject>Distribution functions</subject><subject>Hydrocarbons</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Inhibitors</subject><subject>Interfacial behavior</subject><subject>Molecular dynamics</subject><subject>Molecular interactions</subject><subject>Oil</subject><subject>Oil recovery</subject><subject>Oil sands</subject><subject>Pollutants</subject><subject>Radial distribution</subject><subject>Simulation</subject><subject>Steam</subject><subject>Surfactants</subject><subject>Viscosity</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF1x3zaJIG3MjgCwbcjOuQprdOSiepSSv4700Z164u9_Cd-zgI3RK8IZiI-37TzTBsKKZZIEpSdYZWpJaslISzc7TCmSopE-QSXaXUY4xlzasV2m_DcYxwAJ_cNxTHMICdBxOLZM2w9C0Mzn8WoSuMd8E7W6Q5dsZOxk-lSePBDBN4KJyfIGY5M-kaXXRmSHDzV9fo4_lpv30td-8vb9vHXWkZraeSSiIa2oi24xaIVS1IyB8oMLzitJFMCiY7QQSmrOIclIGGCQEKsGk7WrE1ujvNHWP4miFNug9z9HmlplWtMBWKy0zRE2VjSClCp8fojib-aIL1kp7u9ZKeXtLTp_Sy6eFkgnz_t4Ook3XgLbQugp10G9x_9l9OPXl_</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Ahmadi, Mohammadali</creator><creator>Chen, Zhangxin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9107-1925</orcidid></search><sort><creationdate>20210315</creationdate><title>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</title><author>Ahmadi, Mohammadali ; Chen, Zhangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Anionic surfactant</topic><topic>Asphaltene</topic><topic>Asphaltenes</topic><topic>Benzene</topic><topic>Bitumens</topic><topic>Dispersants</topic><topic>Dispersion</topic><topic>Distribution functions</topic><topic>Hydrocarbons</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Inhibitors</topic><topic>Interfacial behavior</topic><topic>Molecular dynamics</topic><topic>Molecular interactions</topic><topic>Oil</topic><topic>Oil recovery</topic><topic>Oil sands</topic><topic>Pollutants</topic><topic>Radial distribution</topic><topic>Simulation</topic><topic>Steam</topic><topic>Surfactants</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mohammadali</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mohammadali</au><au>Chen, Zhangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>288</volume><spage>119729</spage><pages>119729-</pages><artnum>119729</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants. Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.119729</doi><orcidid>https://orcid.org/0000-0002-9107-1925</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-03, Vol.288, p.119729, Article 119729
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2489026957
source Elsevier ScienceDirect Journals
subjects Additives
Anionic surfactant
Asphaltene
Asphaltenes
Benzene
Bitumens
Dispersants
Dispersion
Distribution functions
Hydrocarbons
Hydrogen bonding
Hydrogen bonds
Inhibitors
Interfacial behavior
Molecular dynamics
Molecular interactions
Oil
Oil recovery
Oil sands
Pollutants
Radial distribution
Simulation
Steam
Surfactants
Viscosity
title Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20molecular%20scale%20modeling%20of%20anionic%20surfactant-asphaltene%20interactions&rft.jtitle=Fuel%20(Guildford)&rft.au=Ahmadi,%20Mohammadali&rft.date=2021-03-15&rft.volume=288&rft.spage=119729&rft.pages=119729-&rft.artnum=119729&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.119729&rft_dat=%3Cproquest_cross%3E2489026957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489026957&rft_id=info:pmid/&rft_els_id=S0016236120327253&rfr_iscdi=true