Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions
[Display omitted] Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-03, Vol.288, p.119729, Article 119729 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 119729 |
container_title | Fuel (Guildford) |
container_volume | 288 |
creator | Ahmadi, Mohammadali Chen, Zhangxin |
description | [Display omitted]
Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants.
Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery. |
doi_str_mv | 10.1016/j.fuel.2020.119729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489026957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120327253</els_id><sourcerecordid>2489026957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF1x3zaJIG3MjgCwbcjOuQprdOSiepSSv4700Z164u9_Cd-zgI3RK8IZiI-37TzTBsKKZZIEpSdYZWpJaslISzc7TCmSopE-QSXaXUY4xlzasV2m_DcYxwAJ_cNxTHMICdBxOLZM2w9C0Mzn8WoSuMd8E7W6Q5dsZOxk-lSePBDBN4KJyfIGY5M-kaXXRmSHDzV9fo4_lpv30td-8vb9vHXWkZraeSSiIa2oi24xaIVS1IyB8oMLzitJFMCiY7QQSmrOIclIGGCQEKsGk7WrE1ujvNHWP4miFNug9z9HmlplWtMBWKy0zRE2VjSClCp8fojib-aIL1kp7u9ZKeXtLTp_Sy6eFkgnz_t4Ook3XgLbQugp10G9x_9l9OPXl_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489026957</pqid></control><display><type>article</type><title>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Ahmadi, Mohammadali ; Chen, Zhangxin</creator><creatorcontrib>Ahmadi, Mohammadali ; Chen, Zhangxin</creatorcontrib><description>[Display omitted]
Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants.
Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.119729</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Additives ; Anionic surfactant ; Asphaltene ; Asphaltenes ; Benzene ; Bitumens ; Dispersants ; Dispersion ; Distribution functions ; Hydrocarbons ; Hydrogen bonding ; Hydrogen bonds ; Inhibitors ; Interfacial behavior ; Molecular dynamics ; Molecular interactions ; Oil ; Oil recovery ; Oil sands ; Pollutants ; Radial distribution ; Simulation ; Steam ; Surfactants ; Viscosity</subject><ispartof>Fuel (Guildford), 2021-03, Vol.288, p.119729, Article 119729</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</citedby><cites>FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</cites><orcidid>0000-0002-9107-1925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236120327253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ahmadi, Mohammadali</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><title>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</title><title>Fuel (Guildford)</title><description>[Display omitted]
Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants.
Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.</description><subject>Additives</subject><subject>Anionic surfactant</subject><subject>Asphaltene</subject><subject>Asphaltenes</subject><subject>Benzene</subject><subject>Bitumens</subject><subject>Dispersants</subject><subject>Dispersion</subject><subject>Distribution functions</subject><subject>Hydrocarbons</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Inhibitors</subject><subject>Interfacial behavior</subject><subject>Molecular dynamics</subject><subject>Molecular interactions</subject><subject>Oil</subject><subject>Oil recovery</subject><subject>Oil sands</subject><subject>Pollutants</subject><subject>Radial distribution</subject><subject>Simulation</subject><subject>Steam</subject><subject>Surfactants</subject><subject>Viscosity</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF1x3zaJIG3MjgCwbcjOuQprdOSiepSSv4700Z164u9_Cd-zgI3RK8IZiI-37TzTBsKKZZIEpSdYZWpJaslISzc7TCmSopE-QSXaXUY4xlzasV2m_DcYxwAJ_cNxTHMICdBxOLZM2w9C0Mzn8WoSuMd8E7W6Q5dsZOxk-lSePBDBN4KJyfIGY5M-kaXXRmSHDzV9fo4_lpv30td-8vb9vHXWkZraeSSiIa2oi24xaIVS1IyB8oMLzitJFMCiY7QQSmrOIclIGGCQEKsGk7WrE1ujvNHWP4miFNug9z9HmlplWtMBWKy0zRE2VjSClCp8fojib-aIL1kp7u9ZKeXtLTp_Sy6eFkgnz_t4Ook3XgLbQugp10G9x_9l9OPXl_</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Ahmadi, Mohammadali</creator><creator>Chen, Zhangxin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9107-1925</orcidid></search><sort><creationdate>20210315</creationdate><title>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</title><author>Ahmadi, Mohammadali ; Chen, Zhangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2716b2b6df5ce1c9de7e2029ea5452b737637f616023455e9aeb366e9e0adf243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Anionic surfactant</topic><topic>Asphaltene</topic><topic>Asphaltenes</topic><topic>Benzene</topic><topic>Bitumens</topic><topic>Dispersants</topic><topic>Dispersion</topic><topic>Distribution functions</topic><topic>Hydrocarbons</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Inhibitors</topic><topic>Interfacial behavior</topic><topic>Molecular dynamics</topic><topic>Molecular interactions</topic><topic>Oil</topic><topic>Oil recovery</topic><topic>Oil sands</topic><topic>Pollutants</topic><topic>Radial distribution</topic><topic>Simulation</topic><topic>Steam</topic><topic>Surfactants</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mohammadali</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mohammadali</au><au>Chen, Zhangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>288</volume><spage>119729</spage><pages>119729-</pages><artnum>119729</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
Asphaltene is the heaviest fraction of oil sands/bitumen, which is also the leading cause of these oil resources' high viscosity value. Nowadays, steam with additives is used to make oil sands/bitumen mobile through a reservoir by lowering their viscosity. Additives can be air, solvent, non-condensable gas (NCG), and surfactants. Surfactants can be used not only as a chemical additive in thermal oil recovery but also as an asphaltene inhibitor or dispersant. Formulating surfactants needs thorough and reliable knowledge about molecular interactions between asphaltene and surfactants. This paper has used molecular dynamics (MD) simulation to evaluate these interactions at thermodynamic conditions close to thermal-based oil recovery conditions. Three different asphaltene architectures observed in Athabasca oil-sands are used to examine the molecular interactions between asphaltenes and anionic surfactants.
Moreover, the effect of a benzene ring on inter-molecular interactions at different temperatures is thoroughly investigated. Various analyses, including a radial distribution function (RDF), hydrogen bonds, and interaction energies, are employed to support the outcomes. Based on MD simulation results, the presence of a benzene ring in a surfactant structure can increase the interactions, especially van der Waals interactions. Moreover, the position and number of heteroatoms in asphaltene architecture play a vital role in asphaltene behavior in a solution. Results of this work give solid knowledge regarding asphaltene and surfactant interactions and provide helpful information for formulating surfactants, whether as an asphaltene inhibitor/dispersant or a steam additive for in-situ bitumen recovery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.119729</doi><orcidid>https://orcid.org/0000-0002-9107-1925</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-03, Vol.288, p.119729, Article 119729 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2489026957 |
source | Elsevier ScienceDirect Journals |
subjects | Additives Anionic surfactant Asphaltene Asphaltenes Benzene Bitumens Dispersants Dispersion Distribution functions Hydrocarbons Hydrogen bonding Hydrogen bonds Inhibitors Interfacial behavior Molecular dynamics Molecular interactions Oil Oil recovery Oil sands Pollutants Radial distribution Simulation Steam Surfactants Viscosity |
title | Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20molecular%20scale%20modeling%20of%20anionic%20surfactant-asphaltene%20interactions&rft.jtitle=Fuel%20(Guildford)&rft.au=Ahmadi,%20Mohammadali&rft.date=2021-03-15&rft.volume=288&rft.spage=119729&rft.pages=119729-&rft.artnum=119729&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.119729&rft_dat=%3Cproquest_cross%3E2489026957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489026957&rft_id=info:pmid/&rft_els_id=S0016236120327253&rfr_iscdi=true |