Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5

Cu-Ga-Se chalcopyrite structures with a band gap of 1.68 eV (CuGaSe2) to 1.85 eV (CuGa3Se5) are considered to be promising materials to be used as the photocathode in a tandem photoelectrochemical (PEC) water splitting configuration. Therefore, we prepared polycrystalline Cu-Ga-Se films with differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-01, Vol.367, p.137183, Article 137183
Hauptverfasser: Mahmoudi, Behzad, Caddeo, Francesco, Lindenberg, Titus, Schneider, Thomas, Hölscher, Torsten, Scheer, Roland, Maijenburg, A. Wouter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 137183
container_title Electrochimica acta
container_volume 367
creator Mahmoudi, Behzad
Caddeo, Francesco
Lindenberg, Titus
Schneider, Thomas
Hölscher, Torsten
Scheer, Roland
Maijenburg, A. Wouter
description Cu-Ga-Se chalcopyrite structures with a band gap of 1.68 eV (CuGaSe2) to 1.85 eV (CuGa3Se5) are considered to be promising materials to be used as the photocathode in a tandem photoelectrochemical (PEC) water splitting configuration. Therefore, we prepared polycrystalline Cu-Ga-Se films with different compositions ranging from Cu-poor CuGaSe2 (Cu/Ga = 0.85) to extremely Cu-poor CuGa3Se5 (Cu/Ga = 0.33) and investigated the effect of the Cu/Ga ratio on the crystal structure, morphology and PEC performance of the films. Without any surface treatment or formation of a p-n junction, we report remarkable saturated photocurrent densities of -19.0 and -12.1 mA/cm2 (measured at -0.40 V vs. RHE) for our films with Cu/Ga = 0.85 and Cu/Ga = 0.33, respectively, using an LED-based solar simulator. These outstanding results cover 86% and 68% of the maximum theoretical photocurrents for materials with a band gap of 1.68 eV and 1.85 eV, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) confirmed that the obtained difference in onset potential (270 mV) between these two films was in agreement with the obtained difference in flat-band potential (290 mV). [Display omitted]
doi_str_mv 10.1016/j.electacta.2020.137183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489024099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620315760</els_id><sourcerecordid>2489024099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c67c15b822a742238667c5f3c722b8de5c211ac34aecf6795e772bd6f7a4a0d03</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKefwYLPnfnTJu3jGDqFgcL0OWTp7ZrSNjXJFL-92Sq-Chdyufmdc7kHoVuCFwQTft8uoAMdVKwFxTROmSAFO0MzUgiWsiIvz9EMY8LSjBf8El1532KMBRd4hrrXxgZ7cnBWN9AbrbpkdHYEFwz4xNbJ6pCuVbqFZDyyWoXGVvHny4Qm0bYfrTfB2MEnTg17M-yT2tk-qtZqCzQJ9tSyLeTX6KJWnYeb33eO3h8f3lZP6eZl_bxablLNMhZSzYUm-a6gVImMUlbwOMhrpgWlu6KCXFNCVGQV6JqLMgch6K7itVCZwhVmc3Q3-cY7Pg7gg2ztwQ1xpaRZUWKa4bKMlJgo7az3Dmo5OtMr9y0JlsdoZSv_opXHaOUUbVQuJyXEIz4NOOm1gUFDZVzkZWXNvx4__xGGxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489024099</pqid></control><display><type>article</type><title>Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5</title><source>Elsevier ScienceDirect Journals</source><creator>Mahmoudi, Behzad ; Caddeo, Francesco ; Lindenberg, Titus ; Schneider, Thomas ; Hölscher, Torsten ; Scheer, Roland ; Maijenburg, A. Wouter</creator><creatorcontrib>Mahmoudi, Behzad ; Caddeo, Francesco ; Lindenberg, Titus ; Schneider, Thomas ; Hölscher, Torsten ; Scheer, Roland ; Maijenburg, A. Wouter</creatorcontrib><description>Cu-Ga-Se chalcopyrite structures with a band gap of 1.68 eV (CuGaSe2) to 1.85 eV (CuGa3Se5) are considered to be promising materials to be used as the photocathode in a tandem photoelectrochemical (PEC) water splitting configuration. Therefore, we prepared polycrystalline Cu-Ga-Se films with different compositions ranging from Cu-poor CuGaSe2 (Cu/Ga = 0.85) to extremely Cu-poor CuGa3Se5 (Cu/Ga = 0.33) and investigated the effect of the Cu/Ga ratio on the crystal structure, morphology and PEC performance of the films. Without any surface treatment or formation of a p-n junction, we report remarkable saturated photocurrent densities of -19.0 and -12.1 mA/cm2 (measured at -0.40 V vs. RHE) for our films with Cu/Ga = 0.85 and Cu/Ga = 0.33, respectively, using an LED-based solar simulator. These outstanding results cover 86% and 68% of the maximum theoretical photocurrents for materials with a band gap of 1.68 eV and 1.85 eV, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) confirmed that the obtained difference in onset potential (270 mV) between these two films was in agreement with the obtained difference in flat-band potential (290 mV). [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137183</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>CGSe ; Chalcopyrite ; CIGS ; Co-evaporation ; Composition ; Crystal structure ; Electrochemical impedance spectroscopy ; Energy gap ; Hydrogen evolution ; Morphology ; P-n junctions ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; Photoelectrolysis ; Physical vapor deposition (PVD) ; Surface treatment ; Water splitting</subject><ispartof>Electrochimica acta, 2021-01, Vol.367, p.137183, Article 137183</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-c67c15b822a742238667c5f3c722b8de5c211ac34aecf6795e772bd6f7a4a0d03</citedby><cites>FETCH-LOGICAL-c343t-c67c15b822a742238667c5f3c722b8de5c211ac34aecf6795e772bd6f7a4a0d03</cites><orcidid>0000-0002-2909-5379 ; 0000-0002-0690-484X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620315760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mahmoudi, Behzad</creatorcontrib><creatorcontrib>Caddeo, Francesco</creatorcontrib><creatorcontrib>Lindenberg, Titus</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><creatorcontrib>Hölscher, Torsten</creatorcontrib><creatorcontrib>Scheer, Roland</creatorcontrib><creatorcontrib>Maijenburg, A. Wouter</creatorcontrib><title>Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5</title><title>Electrochimica acta</title><description>Cu-Ga-Se chalcopyrite structures with a band gap of 1.68 eV (CuGaSe2) to 1.85 eV (CuGa3Se5) are considered to be promising materials to be used as the photocathode in a tandem photoelectrochemical (PEC) water splitting configuration. Therefore, we prepared polycrystalline Cu-Ga-Se films with different compositions ranging from Cu-poor CuGaSe2 (Cu/Ga = 0.85) to extremely Cu-poor CuGa3Se5 (Cu/Ga = 0.33) and investigated the effect of the Cu/Ga ratio on the crystal structure, morphology and PEC performance of the films. Without any surface treatment or formation of a p-n junction, we report remarkable saturated photocurrent densities of -19.0 and -12.1 mA/cm2 (measured at -0.40 V vs. RHE) for our films with Cu/Ga = 0.85 and Cu/Ga = 0.33, respectively, using an LED-based solar simulator. These outstanding results cover 86% and 68% of the maximum theoretical photocurrents for materials with a band gap of 1.68 eV and 1.85 eV, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) confirmed that the obtained difference in onset potential (270 mV) between these two films was in agreement with the obtained difference in flat-band potential (290 mV). [Display omitted]</description><subject>CGSe</subject><subject>Chalcopyrite</subject><subject>CIGS</subject><subject>Co-evaporation</subject><subject>Composition</subject><subject>Crystal structure</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy gap</subject><subject>Hydrogen evolution</subject><subject>Morphology</subject><subject>P-n junctions</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrolysis</subject><subject>Physical vapor deposition (PVD)</subject><subject>Surface treatment</subject><subject>Water splitting</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKefwYLPnfnTJu3jGDqFgcL0OWTp7ZrSNjXJFL-92Sq-Chdyufmdc7kHoVuCFwQTft8uoAMdVKwFxTROmSAFO0MzUgiWsiIvz9EMY8LSjBf8El1532KMBRd4hrrXxgZ7cnBWN9AbrbpkdHYEFwz4xNbJ6pCuVbqFZDyyWoXGVvHny4Qm0bYfrTfB2MEnTg17M-yT2tk-qtZqCzQJ9tSyLeTX6KJWnYeb33eO3h8f3lZP6eZl_bxablLNMhZSzYUm-a6gVImMUlbwOMhrpgWlu6KCXFNCVGQV6JqLMgch6K7itVCZwhVmc3Q3-cY7Pg7gg2ztwQ1xpaRZUWKa4bKMlJgo7az3Dmo5OtMr9y0JlsdoZSv_opXHaOUUbVQuJyXEIz4NOOm1gUFDZVzkZWXNvx4__xGGxg</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Mahmoudi, Behzad</creator><creator>Caddeo, Francesco</creator><creator>Lindenberg, Titus</creator><creator>Schneider, Thomas</creator><creator>Hölscher, Torsten</creator><creator>Scheer, Roland</creator><creator>Maijenburg, A. Wouter</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2909-5379</orcidid><orcidid>https://orcid.org/0000-0002-0690-484X</orcidid></search><sort><creationdate>20210120</creationdate><title>Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5</title><author>Mahmoudi, Behzad ; Caddeo, Francesco ; Lindenberg, Titus ; Schneider, Thomas ; Hölscher, Torsten ; Scheer, Roland ; Maijenburg, A. Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c67c15b822a742238667c5f3c722b8de5c211ac34aecf6795e772bd6f7a4a0d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CGSe</topic><topic>Chalcopyrite</topic><topic>CIGS</topic><topic>Co-evaporation</topic><topic>Composition</topic><topic>Crystal structure</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy gap</topic><topic>Hydrogen evolution</topic><topic>Morphology</topic><topic>P-n junctions</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrolysis</topic><topic>Physical vapor deposition (PVD)</topic><topic>Surface treatment</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoudi, Behzad</creatorcontrib><creatorcontrib>Caddeo, Francesco</creatorcontrib><creatorcontrib>Lindenberg, Titus</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><creatorcontrib>Hölscher, Torsten</creatorcontrib><creatorcontrib>Scheer, Roland</creatorcontrib><creatorcontrib>Maijenburg, A. Wouter</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoudi, Behzad</au><au>Caddeo, Francesco</au><au>Lindenberg, Titus</au><au>Schneider, Thomas</au><au>Hölscher, Torsten</au><au>Scheer, Roland</au><au>Maijenburg, A. Wouter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>367</volume><spage>137183</spage><pages>137183-</pages><artnum>137183</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Cu-Ga-Se chalcopyrite structures with a band gap of 1.68 eV (CuGaSe2) to 1.85 eV (CuGa3Se5) are considered to be promising materials to be used as the photocathode in a tandem photoelectrochemical (PEC) water splitting configuration. Therefore, we prepared polycrystalline Cu-Ga-Se films with different compositions ranging from Cu-poor CuGaSe2 (Cu/Ga = 0.85) to extremely Cu-poor CuGa3Se5 (Cu/Ga = 0.33) and investigated the effect of the Cu/Ga ratio on the crystal structure, morphology and PEC performance of the films. Without any surface treatment or formation of a p-n junction, we report remarkable saturated photocurrent densities of -19.0 and -12.1 mA/cm2 (measured at -0.40 V vs. RHE) for our films with Cu/Ga = 0.85 and Cu/Ga = 0.33, respectively, using an LED-based solar simulator. These outstanding results cover 86% and 68% of the maximum theoretical photocurrents for materials with a band gap of 1.68 eV and 1.85 eV, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) confirmed that the obtained difference in onset potential (270 mV) between these two films was in agreement with the obtained difference in flat-band potential (290 mV). [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137183</doi><orcidid>https://orcid.org/0000-0002-2909-5379</orcidid><orcidid>https://orcid.org/0000-0002-0690-484X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-01, Vol.367, p.137183, Article 137183
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2489024099
source Elsevier ScienceDirect Journals
subjects CGSe
Chalcopyrite
CIGS
Co-evaporation
Composition
Crystal structure
Electrochemical impedance spectroscopy
Energy gap
Hydrogen evolution
Morphology
P-n junctions
Photocathodes
Photoelectric effect
Photoelectric emission
Photoelectrolysis
Physical vapor deposition (PVD)
Surface treatment
Water splitting
title Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20properties%20of%20Cu-Ga-Se%20photocathodes%20with%20compositions%20ranging%20from%20CuGaSe2%20to%20CuGa3Se5&rft.jtitle=Electrochimica%20acta&rft.au=Mahmoudi,%20Behzad&rft.date=2021-01-20&rft.volume=367&rft.spage=137183&rft.pages=137183-&rft.artnum=137183&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137183&rft_dat=%3Cproquest_cross%3E2489024099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489024099&rft_id=info:pmid/&rft_els_id=S0013468620315760&rfr_iscdi=true