A shock-tube study of the N2O + M ⇄ N2 + O + M (M = Ar) rate constant using N2O laser absorption near 4.6 µm

The low-pressure limit rate constant k1,0 of the reaction N2O + M ⇄ N2 + O + M was measured in shock-heated mixtures of 0.2% N2O/Ar using 4.56-µm laser absorption of N2O in the temperature range 1546–2476 K near 1.3 atm. Modeling the N2O profiles with a detailed kinetic analysis, which considered no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2021-02, Vol.224, p.6-13
Hauptverfasser: Mulvihill, Clayton R., Alturaifi, Sulaiman A., Petersen, Eric L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 6
container_title Combustion and flame
container_volume 224
creator Mulvihill, Clayton R.
Alturaifi, Sulaiman A.
Petersen, Eric L.
description The low-pressure limit rate constant k1,0 of the reaction N2O + M ⇄ N2 + O + M was measured in shock-heated mixtures of 0.2% N2O/Ar using 4.56-µm laser absorption of N2O in the temperature range 1546–2476 K near 1.3 atm. Modeling the N2O profiles with a detailed kinetic analysis, which considered non-ideal pressure variations, provided k1,0 values that were best fit by the expression k1,0=1.01×1015exp(−30,050/T), with k1,0 in cm3mol–1s–1 and T in K. Estimated k1,0 uncertainties at 1546, 1821, and 2230 K were respectively 13.0%, 8.9%, and 9.0%. By combining the results of the present study with previous low-temperature data measured in flow/static reactors, the best fit over the temperature range 850–2500 K was determined to be (k1,0 in cm3mol–1s–1, T in K)(R1)k1,0=(1.04±0.04×1015)exp[(−30,098±90)/T]. This is the first study of k1,0 using N2O infrared laser absorption. Through the high signal-to-noise ratios of the experimental N2O profiles and careful consideration of dP/dt effects, this k1,0 determination is in excellent agreement with the large body of historical k1,0 data but demonstrates significantly less scatter than all previous measurements.
doi_str_mv 10.1016/j.combustflame.2020.10.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489023771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218020304600</els_id><sourcerecordid>2489023771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3190-43d90b18b57524310f71970816608dfa0f647b71687ef30b4caeeacdd858cdb13</originalsourceid><addsrcrecordid>eNqNUEtO3EAQbUVBygS4QytsEiGb6van7UgsRsNXgrCBdavdLgebGffQ3Y4yeySu4UtwAR8lJ8FmiJRlVqVX71OqR8gXBiEDlh41oTaronO-WqoVhhz4RIQQwwcyY0mSBjzn7COZATAIOMvgE_nsXAMAIo6iGfk9p-7e6IfAdwVS57tyQ01F_T3SH_xm6A-H_pr-eX4a0Rv4u_p6PfTHQz-336hVHqk2rfOq9bRzdftz8tKlcmipKpyxa1-blraoLI3DdOiHl9Ue2anU0uH--9wld2ent4uL4Orm_HIxvwp0xHII4qjMoWBZkYiExxGDSrBcQMbSFLKyUlClsSgESzOBVQRFrBWi0mWZJZkuCxbtkoNt7tqaxw6dl43pbDuelDzOcuCREJPq-1alrXHOYiXXtl4pu5EM5NS0bOS_Tcup6Ykbmx7NJ1szjn_8qtFKp2tsNZa1Re1laer_iXkF0JGSdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489023771</pqid></control><display><type>article</type><title>A shock-tube study of the N2O + M ⇄ N2 + O + M (M = Ar) rate constant using N2O laser absorption near 4.6 µm</title><source>Elsevier ScienceDirect Journals</source><creator>Mulvihill, Clayton R. ; Alturaifi, Sulaiman A. ; Petersen, Eric L.</creator><creatorcontrib>Mulvihill, Clayton R. ; Alturaifi, Sulaiman A. ; Petersen, Eric L.</creatorcontrib><description>The low-pressure limit rate constant k1,0 of the reaction N2O + M ⇄ N2 + O + M was measured in shock-heated mixtures of 0.2% N2O/Ar using 4.56-µm laser absorption of N2O in the temperature range 1546–2476 K near 1.3 atm. Modeling the N2O profiles with a detailed kinetic analysis, which considered non-ideal pressure variations, provided k1,0 values that were best fit by the expression k1,0=1.01×1015exp(−30,050/T), with k1,0 in cm3mol–1s–1 and T in K. Estimated k1,0 uncertainties at 1546, 1821, and 2230 K were respectively 13.0%, 8.9%, and 9.0%. By combining the results of the present study with previous low-temperature data measured in flow/static reactors, the best fit over the temperature range 850–2500 K was determined to be (k1,0 in cm3mol–1s–1, T in K)(R1)k1,0=(1.04±0.04×1015)exp[(−30,098±90)/T]. This is the first study of k1,0 using N2O infrared laser absorption. Through the high signal-to-noise ratios of the experimental N2O profiles and careful consideration of dP/dt effects, this k1,0 determination is in excellent agreement with the large body of historical k1,0 data but demonstrates significantly less scatter than all previous measurements.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2020.10.040</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Absorption ; Infrared lasers ; Laser beam heating ; Lasers ; Low pressure ; Low temperature ; Low-pressure limit ; Nitrous oxide ; Thermal decomposition</subject><ispartof>Combustion and flame, 2021-02, Vol.224, p.6-13</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3190-43d90b18b57524310f71970816608dfa0f647b71687ef30b4caeeacdd858cdb13</citedby><cites>FETCH-LOGICAL-c3190-43d90b18b57524310f71970816608dfa0f647b71687ef30b4caeeacdd858cdb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218020304600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mulvihill, Clayton R.</creatorcontrib><creatorcontrib>Alturaifi, Sulaiman A.</creatorcontrib><creatorcontrib>Petersen, Eric L.</creatorcontrib><title>A shock-tube study of the N2O + M ⇄ N2 + O + M (M = Ar) rate constant using N2O laser absorption near 4.6 µm</title><title>Combustion and flame</title><description>The low-pressure limit rate constant k1,0 of the reaction N2O + M ⇄ N2 + O + M was measured in shock-heated mixtures of 0.2% N2O/Ar using 4.56-µm laser absorption of N2O in the temperature range 1546–2476 K near 1.3 atm. Modeling the N2O profiles with a detailed kinetic analysis, which considered non-ideal pressure variations, provided k1,0 values that were best fit by the expression k1,0=1.01×1015exp(−30,050/T), with k1,0 in cm3mol–1s–1 and T in K. Estimated k1,0 uncertainties at 1546, 1821, and 2230 K were respectively 13.0%, 8.9%, and 9.0%. By combining the results of the present study with previous low-temperature data measured in flow/static reactors, the best fit over the temperature range 850–2500 K was determined to be (k1,0 in cm3mol–1s–1, T in K)(R1)k1,0=(1.04±0.04×1015)exp[(−30,098±90)/T]. This is the first study of k1,0 using N2O infrared laser absorption. Through the high signal-to-noise ratios of the experimental N2O profiles and careful consideration of dP/dt effects, this k1,0 determination is in excellent agreement with the large body of historical k1,0 data but demonstrates significantly less scatter than all previous measurements.</description><subject>Absorption</subject><subject>Infrared lasers</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Low pressure</subject><subject>Low temperature</subject><subject>Low-pressure limit</subject><subject>Nitrous oxide</subject><subject>Thermal decomposition</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUEtO3EAQbUVBygS4QytsEiGb6van7UgsRsNXgrCBdavdLgebGffQ3Y4yeySu4UtwAR8lJ8FmiJRlVqVX71OqR8gXBiEDlh41oTaronO-WqoVhhz4RIQQwwcyY0mSBjzn7COZATAIOMvgE_nsXAMAIo6iGfk9p-7e6IfAdwVS57tyQ01F_T3SH_xm6A-H_pr-eX4a0Rv4u_p6PfTHQz-336hVHqk2rfOq9bRzdftz8tKlcmipKpyxa1-blraoLI3DdOiHl9Ue2anU0uH--9wld2ent4uL4Orm_HIxvwp0xHII4qjMoWBZkYiExxGDSrBcQMbSFLKyUlClsSgESzOBVQRFrBWi0mWZJZkuCxbtkoNt7tqaxw6dl43pbDuelDzOcuCREJPq-1alrXHOYiXXtl4pu5EM5NS0bOS_Tcup6Ykbmx7NJ1szjn_8qtFKp2tsNZa1Re1laer_iXkF0JGSdA</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Mulvihill, Clayton R.</creator><creator>Alturaifi, Sulaiman A.</creator><creator>Petersen, Eric L.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202102</creationdate><title>A shock-tube study of the N2O + M ⇄ N2 + O + M (M = Ar) rate constant using N2O laser absorption near 4.6 µm</title><author>Mulvihill, Clayton R. ; Alturaifi, Sulaiman A. ; Petersen, Eric L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3190-43d90b18b57524310f71970816608dfa0f647b71687ef30b4caeeacdd858cdb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Infrared lasers</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Low pressure</topic><topic>Low temperature</topic><topic>Low-pressure limit</topic><topic>Nitrous oxide</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulvihill, Clayton R.</creatorcontrib><creatorcontrib>Alturaifi, Sulaiman A.</creatorcontrib><creatorcontrib>Petersen, Eric L.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulvihill, Clayton R.</au><au>Alturaifi, Sulaiman A.</au><au>Petersen, Eric L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shock-tube study of the N2O + M ⇄ N2 + O + M (M = Ar) rate constant using N2O laser absorption near 4.6 µm</atitle><jtitle>Combustion and flame</jtitle><date>2021-02</date><risdate>2021</risdate><volume>224</volume><spage>6</spage><epage>13</epage><pages>6-13</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>The low-pressure limit rate constant k1,0 of the reaction N2O + M ⇄ N2 + O + M was measured in shock-heated mixtures of 0.2% N2O/Ar using 4.56-µm laser absorption of N2O in the temperature range 1546–2476 K near 1.3 atm. Modeling the N2O profiles with a detailed kinetic analysis, which considered non-ideal pressure variations, provided k1,0 values that were best fit by the expression k1,0=1.01×1015exp(−30,050/T), with k1,0 in cm3mol–1s–1 and T in K. Estimated k1,0 uncertainties at 1546, 1821, and 2230 K were respectively 13.0%, 8.9%, and 9.0%. By combining the results of the present study with previous low-temperature data measured in flow/static reactors, the best fit over the temperature range 850–2500 K was determined to be (k1,0 in cm3mol–1s–1, T in K)(R1)k1,0=(1.04±0.04×1015)exp[(−30,098±90)/T]. This is the first study of k1,0 using N2O infrared laser absorption. Through the high signal-to-noise ratios of the experimental N2O profiles and careful consideration of dP/dt effects, this k1,0 determination is in excellent agreement with the large body of historical k1,0 data but demonstrates significantly less scatter than all previous measurements.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2020.10.040</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2021-02, Vol.224, p.6-13
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2489023771
source Elsevier ScienceDirect Journals
subjects Absorption
Infrared lasers
Laser beam heating
Lasers
Low pressure
Low temperature
Low-pressure limit
Nitrous oxide
Thermal decomposition
title A shock-tube study of the N2O + M ⇄ N2 + O + M (M = Ar) rate constant using N2O laser absorption near 4.6 µm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shock-tube%20study%20of%20the%20N2O%C2%A0+%C2%A0M%20%E2%87%84%20N2%C2%A0+%C2%A0O%C2%A0+%C2%A0M%20(M%C2%A0=%C2%A0Ar)%20rate%20constant%20using%20N2O%20laser%20absorption%20near%204.6%C2%A0%C2%B5m&rft.jtitle=Combustion%20and%20flame&rft.au=Mulvihill,%20Clayton%20R.&rft.date=2021-02&rft.volume=224&rft.spage=6&rft.epage=13&rft.pages=6-13&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2020.10.040&rft_dat=%3Cproquest_cross%3E2489023771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489023771&rft_id=info:pmid/&rft_els_id=S0010218020304600&rfr_iscdi=true