Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography

Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radioanalytical and nuclear chemistry 2021, Vol.327 (1), p.307-316
Hauptverfasser: Ward, Jessica, Bucher, Brian, Carney, Kevin, Snow, Mathew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 1
container_start_page 307
container_title Journal of radioanalytical and nuclear chemistry
container_volume 327
creator Ward, Jessica
Bucher, Brian
Carney, Kevin
Snow, Mathew
description Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO 3 ) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce 3+ /Ce 4+ oxidation–reduction approach using NaBrO 3 and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs
doi_str_mv 10.1007/s10967-020-07491-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2489022230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651685938</galeid><sourcerecordid>A651685938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</originalsourceid><addsrcrecordid>eNp9kc9q3DAQxkVpoNskL5CToGelI41tSccQtn9goRDas5i15V0Fr-RINm1ufY2-Xp6k3mwhFEqZw8DM98188GPsSsK1BNDviwTbaAEKBOjKSgGv2ErWxgilDbxmK1DYiFqjfMPelnIPANYYXLHt-sc4pBzijg8Upz3F0Hle_EiZppBi4XM5Lteh3ed0ePr5q_BN5Hd-mXKKHR_SdzFmX8qcPR_Cwxw6_iylKe0yjfvHC3bW01D85Z9-zr59WH-9_SQ2Xz5-vr3ZiBZNMwlvaImnCYl0pW3VYtehx63Zgu1VXesarURTS62UxM4q8kiVlM1Wou5B4jl7d7o75vQw-zK5-zTnuLx0qjIWlFIIL6odDd6F2KcpU3sIpXU3TS0bU1s0i-r6H6qlOn8IbYq-D8v8L4M6GdqcSsm-d2MOB8qPToI7InInRG5B5J4RuWMWPJnKeCTg80vi_7h-A3j1k5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489022230</pqid></control><display><type>article</type><title>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</title><source>Springer Nature - Complete Springer Journals</source><creator>Ward, Jessica ; Bucher, Brian ; Carney, Kevin ; Snow, Mathew</creator><creatorcontrib>Ward, Jessica ; Bucher, Brian ; Carney, Kevin ; Snow, Mathew</creatorcontrib><description>Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO 3 ) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce 3+ /Ce 4+ oxidation–reduction approach using NaBrO 3 and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs</description><identifier>ISSN: 0236-5731</identifier><identifier>EISSN: 1588-2780</identifier><identifier>DOI: 10.1007/s10967-020-07491-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ascorbic acid ; Cerium ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Diagnostic Radiology ; Fission products ; Gums and resins industry ; Hadrons ; Heavy Ions ; Inorganic Chemistry ; Lanthanides ; Liquid chromatography ; Low pressure ; Nuclear Chemistry ; Nuclear energy ; Nuclear fuel cycle ; Nuclear Physics ; Organic acids ; Oxidation ; Physical Chemistry ; Praseodymium ; Radiation, Background ; Rare earth metals ; Resins ; Separation ; Sodium salts</subject><ispartof>Journal of radioanalytical and nuclear chemistry, 2021, Vol.327 (1), p.307-316</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</citedby><cites>FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</cites><orcidid>0000-0002-7326-1119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10967-020-07491-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10967-020-07491-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ward, Jessica</creatorcontrib><creatorcontrib>Bucher, Brian</creatorcontrib><creatorcontrib>Carney, Kevin</creatorcontrib><creatorcontrib>Snow, Mathew</creatorcontrib><title>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</title><title>Journal of radioanalytical and nuclear chemistry</title><addtitle>J Radioanal Nucl Chem</addtitle><description>Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO 3 ) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce 3+ /Ce 4+ oxidation–reduction approach using NaBrO 3 and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs</description><subject>Ascorbic acid</subject><subject>Cerium</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Diagnostic Radiology</subject><subject>Fission products</subject><subject>Gums and resins industry</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inorganic Chemistry</subject><subject>Lanthanides</subject><subject>Liquid chromatography</subject><subject>Low pressure</subject><subject>Nuclear Chemistry</subject><subject>Nuclear energy</subject><subject>Nuclear fuel cycle</subject><subject>Nuclear Physics</subject><subject>Organic acids</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Praseodymium</subject><subject>Radiation, Background</subject><subject>Rare earth metals</subject><subject>Resins</subject><subject>Separation</subject><subject>Sodium salts</subject><issn>0236-5731</issn><issn>1588-2780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9q3DAQxkVpoNskL5CToGelI41tSccQtn9goRDas5i15V0Fr-RINm1ufY2-Xp6k3mwhFEqZw8DM98188GPsSsK1BNDviwTbaAEKBOjKSgGv2ErWxgilDbxmK1DYiFqjfMPelnIPANYYXLHt-sc4pBzijg8Upz3F0Hle_EiZppBi4XM5Lteh3ed0ePr5q_BN5Hd-mXKKHR_SdzFmX8qcPR_Cwxw6_iylKe0yjfvHC3bW01D85Z9-zr59WH-9_SQ2Xz5-vr3ZiBZNMwlvaImnCYl0pW3VYtehx63Zgu1VXesarURTS62UxM4q8kiVlM1Wou5B4jl7d7o75vQw-zK5-zTnuLx0qjIWlFIIL6odDd6F2KcpU3sIpXU3TS0bU1s0i-r6H6qlOn8IbYq-D8v8L4M6GdqcSsm-d2MOB8qPToI7InInRG5B5J4RuWMWPJnKeCTg80vi_7h-A3j1k5g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ward, Jessica</creator><creator>Bucher, Brian</creator><creator>Carney, Kevin</creator><creator>Snow, Mathew</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7326-1119</orcidid></search><sort><creationdate>2021</creationdate><title>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</title><author>Ward, Jessica ; Bucher, Brian ; Carney, Kevin ; Snow, Mathew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ascorbic acid</topic><topic>Cerium</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Diagnostic Radiology</topic><topic>Fission products</topic><topic>Gums and resins industry</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inorganic Chemistry</topic><topic>Lanthanides</topic><topic>Liquid chromatography</topic><topic>Low pressure</topic><topic>Nuclear Chemistry</topic><topic>Nuclear energy</topic><topic>Nuclear fuel cycle</topic><topic>Nuclear Physics</topic><topic>Organic acids</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Praseodymium</topic><topic>Radiation, Background</topic><topic>Rare earth metals</topic><topic>Resins</topic><topic>Separation</topic><topic>Sodium salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Jessica</creatorcontrib><creatorcontrib>Bucher, Brian</creatorcontrib><creatorcontrib>Carney, Kevin</creatorcontrib><creatorcontrib>Snow, Mathew</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Jessica</au><au>Bucher, Brian</au><au>Carney, Kevin</au><au>Snow, Mathew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</atitle><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle><stitle>J Radioanal Nucl Chem</stitle><date>2021</date><risdate>2021</risdate><volume>327</volume><issue>1</issue><spage>307</spage><epage>316</epage><pages>307-316</pages><issn>0236-5731</issn><eissn>1588-2780</eissn><abstract>Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO 3 ) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce 3+ /Ce 4+ oxidation–reduction approach using NaBrO 3 and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10967-020-07491-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7326-1119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0236-5731
ispartof Journal of radioanalytical and nuclear chemistry, 2021, Vol.327 (1), p.307-316
issn 0236-5731
1588-2780
language eng
recordid cdi_proquest_journals_2489022230
source Springer Nature - Complete Springer Journals
subjects Ascorbic acid
Cerium
Chemistry
Chemistry and Materials Science
Chromatography
Diagnostic Radiology
Fission products
Gums and resins industry
Hadrons
Heavy Ions
Inorganic Chemistry
Lanthanides
Liquid chromatography
Low pressure
Nuclear Chemistry
Nuclear energy
Nuclear fuel cycle
Nuclear Physics
Organic acids
Oxidation
Physical Chemistry
Praseodymium
Radiation, Background
Rare earth metals
Resins
Separation
Sodium salts
title Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20lanthanide%20separations%20using%20Eichrom%E2%80%99s%20Ln%20Resin%20and%20low-pressure%20liquid%20chromatography&rft.jtitle=Journal%20of%20radioanalytical%20and%20nuclear%20chemistry&rft.au=Ward,%20Jessica&rft.date=2021&rft.volume=327&rft.issue=1&rft.spage=307&rft.epage=316&rft.pages=307-316&rft.issn=0236-5731&rft.eissn=1588-2780&rft_id=info:doi/10.1007/s10967-020-07491-0&rft_dat=%3Cgale_proqu%3EA651685938%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489022230&rft_id=info:pmid/&rft_galeid=A651685938&rfr_iscdi=true