Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography
Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns....
Gespeichert in:
Veröffentlicht in: | Journal of radioanalytical and nuclear chemistry 2021, Vol.327 (1), p.307-316 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 1 |
container_start_page | 307 |
container_title | Journal of radioanalytical and nuclear chemistry |
container_volume | 327 |
creator | Ward, Jessica Bucher, Brian Carney, Kevin Snow, Mathew |
description | Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO
3
) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce
3+
/Ce
4+
oxidation–reduction approach using NaBrO
3
and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs |
doi_str_mv | 10.1007/s10967-020-07491-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2489022230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651685938</galeid><sourcerecordid>A651685938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</originalsourceid><addsrcrecordid>eNp9kc9q3DAQxkVpoNskL5CToGelI41tSccQtn9goRDas5i15V0Fr-RINm1ufY2-Xp6k3mwhFEqZw8DM98188GPsSsK1BNDviwTbaAEKBOjKSgGv2ErWxgilDbxmK1DYiFqjfMPelnIPANYYXLHt-sc4pBzijg8Upz3F0Hle_EiZppBi4XM5Lteh3ed0ePr5q_BN5Hd-mXKKHR_SdzFmX8qcPR_Cwxw6_iylKe0yjfvHC3bW01D85Z9-zr59WH-9_SQ2Xz5-vr3ZiBZNMwlvaImnCYl0pW3VYtehx63Zgu1VXesarURTS62UxM4q8kiVlM1Wou5B4jl7d7o75vQw-zK5-zTnuLx0qjIWlFIIL6odDd6F2KcpU3sIpXU3TS0bU1s0i-r6H6qlOn8IbYq-D8v8L4M6GdqcSsm-d2MOB8qPToI7InInRG5B5J4RuWMWPJnKeCTg80vi_7h-A3j1k5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489022230</pqid></control><display><type>article</type><title>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</title><source>Springer Nature - Complete Springer Journals</source><creator>Ward, Jessica ; Bucher, Brian ; Carney, Kevin ; Snow, Mathew</creator><creatorcontrib>Ward, Jessica ; Bucher, Brian ; Carney, Kevin ; Snow, Mathew</creatorcontrib><description>Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO
3
) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce
3+
/Ce
4+
oxidation–reduction approach using NaBrO
3
and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs</description><identifier>ISSN: 0236-5731</identifier><identifier>EISSN: 1588-2780</identifier><identifier>DOI: 10.1007/s10967-020-07491-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ascorbic acid ; Cerium ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Diagnostic Radiology ; Fission products ; Gums and resins industry ; Hadrons ; Heavy Ions ; Inorganic Chemistry ; Lanthanides ; Liquid chromatography ; Low pressure ; Nuclear Chemistry ; Nuclear energy ; Nuclear fuel cycle ; Nuclear Physics ; Organic acids ; Oxidation ; Physical Chemistry ; Praseodymium ; Radiation, Background ; Rare earth metals ; Resins ; Separation ; Sodium salts</subject><ispartof>Journal of radioanalytical and nuclear chemistry, 2021, Vol.327 (1), p.307-316</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</citedby><cites>FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</cites><orcidid>0000-0002-7326-1119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10967-020-07491-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10967-020-07491-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ward, Jessica</creatorcontrib><creatorcontrib>Bucher, Brian</creatorcontrib><creatorcontrib>Carney, Kevin</creatorcontrib><creatorcontrib>Snow, Mathew</creatorcontrib><title>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</title><title>Journal of radioanalytical and nuclear chemistry</title><addtitle>J Radioanal Nucl Chem</addtitle><description>Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO
3
) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce
3+
/Ce
4+
oxidation–reduction approach using NaBrO
3
and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs</description><subject>Ascorbic acid</subject><subject>Cerium</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Diagnostic Radiology</subject><subject>Fission products</subject><subject>Gums and resins industry</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inorganic Chemistry</subject><subject>Lanthanides</subject><subject>Liquid chromatography</subject><subject>Low pressure</subject><subject>Nuclear Chemistry</subject><subject>Nuclear energy</subject><subject>Nuclear fuel cycle</subject><subject>Nuclear Physics</subject><subject>Organic acids</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Praseodymium</subject><subject>Radiation, Background</subject><subject>Rare earth metals</subject><subject>Resins</subject><subject>Separation</subject><subject>Sodium salts</subject><issn>0236-5731</issn><issn>1588-2780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9q3DAQxkVpoNskL5CToGelI41tSccQtn9goRDas5i15V0Fr-RINm1ufY2-Xp6k3mwhFEqZw8DM98188GPsSsK1BNDviwTbaAEKBOjKSgGv2ErWxgilDbxmK1DYiFqjfMPelnIPANYYXLHt-sc4pBzijg8Upz3F0Hle_EiZppBi4XM5Lteh3ed0ePr5q_BN5Hd-mXKKHR_SdzFmX8qcPR_Cwxw6_iylKe0yjfvHC3bW01D85Z9-zr59WH-9_SQ2Xz5-vr3ZiBZNMwlvaImnCYl0pW3VYtehx63Zgu1VXesarURTS62UxM4q8kiVlM1Wou5B4jl7d7o75vQw-zK5-zTnuLx0qjIWlFIIL6odDd6F2KcpU3sIpXU3TS0bU1s0i-r6H6qlOn8IbYq-D8v8L4M6GdqcSsm-d2MOB8qPToI7InInRG5B5J4RuWMWPJnKeCTg80vi_7h-A3j1k5g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ward, Jessica</creator><creator>Bucher, Brian</creator><creator>Carney, Kevin</creator><creator>Snow, Mathew</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7326-1119</orcidid></search><sort><creationdate>2021</creationdate><title>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</title><author>Ward, Jessica ; Bucher, Brian ; Carney, Kevin ; Snow, Mathew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e8a7317a3aa74794c3dd3e3b8b09f25575391385172213d92ae3a4116b137f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ascorbic acid</topic><topic>Cerium</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Diagnostic Radiology</topic><topic>Fission products</topic><topic>Gums and resins industry</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inorganic Chemistry</topic><topic>Lanthanides</topic><topic>Liquid chromatography</topic><topic>Low pressure</topic><topic>Nuclear Chemistry</topic><topic>Nuclear energy</topic><topic>Nuclear fuel cycle</topic><topic>Nuclear Physics</topic><topic>Organic acids</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Praseodymium</topic><topic>Radiation, Background</topic><topic>Rare earth metals</topic><topic>Resins</topic><topic>Separation</topic><topic>Sodium salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Jessica</creatorcontrib><creatorcontrib>Bucher, Brian</creatorcontrib><creatorcontrib>Carney, Kevin</creatorcontrib><creatorcontrib>Snow, Mathew</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Jessica</au><au>Bucher, Brian</au><au>Carney, Kevin</au><au>Snow, Mathew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography</atitle><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle><stitle>J Radioanal Nucl Chem</stitle><date>2021</date><risdate>2021</risdate><volume>327</volume><issue>1</issue><spage>307</spage><epage>316</epage><pages>307-316</pages><issn>0236-5731</issn><eissn>1588-2780</eissn><abstract>Analytical methods for separating individual lanthanide elements from each other are needed to support various scientific fields. This work reports a systematic evaluation of analytical separations using Eichrom Industries Ln resin and simple peristaltic pump fed low-pressure chromatography columns. Systematic studies of isocratic elutions over a range of acid concentrations (0.10 to 0.25 M HNO
3
) and column lengths (15 to 45 cm) show that with careful selection of the separation conditions baseline separation of the majority of the lanthanide elements can be achieved, with the exception Nd, Pr, Pm and Ce which co-elute at low acid concentrations. The employment of a novel Ce
3+
/Ce
4+
oxidation–reduction approach using NaBrO
3
and ascorbic acid enables isolation of Ce, however baseline separation of Nd, Pr and Pm could not be accomplished using Ln resin, simple acids, and low-pressure chromatography. A method for rapid separation and preconcentration of fission product lanthanides is also reported based upon the optimized conditions identified in this work; the separation approach enables isolation of lanthanide isotopes in high purity and chemical yield, with final elution fraction volumes of 4 mLs</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10967-020-07491-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7326-1119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5731 |
ispartof | Journal of radioanalytical and nuclear chemistry, 2021, Vol.327 (1), p.307-316 |
issn | 0236-5731 1588-2780 |
language | eng |
recordid | cdi_proquest_journals_2489022230 |
source | Springer Nature - Complete Springer Journals |
subjects | Ascorbic acid Cerium Chemistry Chemistry and Materials Science Chromatography Diagnostic Radiology Fission products Gums and resins industry Hadrons Heavy Ions Inorganic Chemistry Lanthanides Liquid chromatography Low pressure Nuclear Chemistry Nuclear energy Nuclear fuel cycle Nuclear Physics Organic acids Oxidation Physical Chemistry Praseodymium Radiation, Background Rare earth metals Resins Separation Sodium salts |
title | Exploring lanthanide separations using Eichrom’s Ln Resin and low-pressure liquid chromatography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20lanthanide%20separations%20using%20Eichrom%E2%80%99s%20Ln%20Resin%20and%20low-pressure%20liquid%20chromatography&rft.jtitle=Journal%20of%20radioanalytical%20and%20nuclear%20chemistry&rft.au=Ward,%20Jessica&rft.date=2021&rft.volume=327&rft.issue=1&rft.spage=307&rft.epage=316&rft.pages=307-316&rft.issn=0236-5731&rft.eissn=1588-2780&rft_id=info:doi/10.1007/s10967-020-07491-0&rft_dat=%3Cgale_proqu%3EA651685938%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489022230&rft_id=info:pmid/&rft_galeid=A651685938&rfr_iscdi=true |