Pristine detonation nanodiamonds as regenerable adsorbents for metal cations
The usability of pristine (not functionalized by grafting) detonation nanodiamonds as reversible and repeatedly regenerated adsorbents for metal cations was shown by examples of sorption of cadmium, zinc, nickel, and copper from aqueous solutions. Various pristine nanodiamond surface treatments are...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2020-12, Vol.110, p.108121, Article 108121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108121 |
container_title | Diamond and related materials |
container_volume | 110 |
creator | Volkov, Dmitry S. Krivoshein, Petr K. Mikheev, Ivan V. Proskurnin, Mikhail A. |
description | The usability of pristine (not functionalized by grafting) detonation nanodiamonds as reversible and repeatedly regenerated adsorbents for metal cations was shown by examples of sorption of cadmium, zinc, nickel, and copper from aqueous solutions. Various pristine nanodiamond surface treatments are discussed. The procedure of oxidative sintering with nitric acid at 250 °C provided a surface with an increased number of carboxyl groups with a sorption capacity above 100 μmol/g for all test cations. Sorption isotherms for test metals (copper, nickel, zinc, and cadmium) can be divided into two distinct parts: a lower part for concentrations of up to 10–15 mmol/L belong to the Langmuir L5 type by Giles and absorption free energies are 8–12 kJ/mol according to the Dubinin–Radushkevich model, evidencing a primarily chemisorption mechanism of the studied cations on micropores in ND surface. The parts of curves above 10–15 mmol/L are described with linear equations, free energies of absorption are 4–6 kJ/mol by Dubinin–Radushkevich that are assigned to physisorption in mesopores. A procedure for the surface regeneration, which is based a similar sintering treatment with nitric acid, was developed. It provided sorption parameters not degraded compared to the starting material; and the regeneration process is repeatable at least for 10 cycles.
[Display omitted]
•Use of nanodiamonds as regenerable cationic sorbents is shown.•Nitric-acid treatment at 250 °C provided sorption capacity above 100 μmol/g.•Langmuir sorption isotherms are shown; absorption free energies are 8–12 kJ/mol according to Dubinin–Radushkevich model.•A regeneration procedure is based on a similar treatment with nitric acid. Sorption parameters of nanodiamonds after regeneration are not degraded.•Regeneration process is repeatable. |
doi_str_mv | 10.1016/j.diamond.2020.108121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489020877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963520306749</els_id><sourcerecordid>2489020877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6dcfcd03cdb885ff4513da2bfdcbcf361e955608282e63404ec85c49bb0b5a493</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QRhwPTWPyUyyEim-oKALXYc8biRDm9QkFfz3Tm33ri4czjmX8yF0TfCCYNLfjgsX9CZFt6CY7jVBKDlBMyIG2WLc01M0w5LyVvaMn6OLUkaMCZUdmaHVWw6lhgiNg5qiriHFJuqYjpWl0aXJ8AkRsjZraLQrKRuItTQ-5WYDVa8b-5crl-jM63WBq-Odo4_Hh_flc7t6fXpZ3q9ay9hQ295Zbx1m1hkhuPcdJ8xparyzxnrWE5Cc91hQQaFnHe7ACm47aQw2XHeSzdHNoXeb09cOSlVj2uU4vVS0E3KCIIZhcvGDy-ZUSgavtjlsdP5RBKs9ODWq40q1B6cO4Kbc3SEH04TvAFkVGyBacCGDrcql8E_DLw2wenY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489020877</pqid></control><display><type>article</type><title>Pristine detonation nanodiamonds as regenerable adsorbents for metal cations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Volkov, Dmitry S. ; Krivoshein, Petr K. ; Mikheev, Ivan V. ; Proskurnin, Mikhail A.</creator><creatorcontrib>Volkov, Dmitry S. ; Krivoshein, Petr K. ; Mikheev, Ivan V. ; Proskurnin, Mikhail A.</creatorcontrib><description>The usability of pristine (not functionalized by grafting) detonation nanodiamonds as reversible and repeatedly regenerated adsorbents for metal cations was shown by examples of sorption of cadmium, zinc, nickel, and copper from aqueous solutions. Various pristine nanodiamond surface treatments are discussed. The procedure of oxidative sintering with nitric acid at 250 °C provided a surface with an increased number of carboxyl groups with a sorption capacity above 100 μmol/g for all test cations. Sorption isotherms for test metals (copper, nickel, zinc, and cadmium) can be divided into two distinct parts: a lower part for concentrations of up to 10–15 mmol/L belong to the Langmuir L5 type by Giles and absorption free energies are 8–12 kJ/mol according to the Dubinin–Radushkevich model, evidencing a primarily chemisorption mechanism of the studied cations on micropores in ND surface. The parts of curves above 10–15 mmol/L are described with linear equations, free energies of absorption are 4–6 kJ/mol by Dubinin–Radushkevich that are assigned to physisorption in mesopores. A procedure for the surface regeneration, which is based a similar sintering treatment with nitric acid, was developed. It provided sorption parameters not degraded compared to the starting material; and the regeneration process is repeatable at least for 10 cycles.
[Display omitted]
•Use of nanodiamonds as regenerable cationic sorbents is shown.•Nitric-acid treatment at 250 °C provided sorption capacity above 100 μmol/g.•Langmuir sorption isotherms are shown; absorption free energies are 8–12 kJ/mol according to Dubinin–Radushkevich model.•A regeneration procedure is based on a similar treatment with nitric acid. Sorption parameters of nanodiamonds after regeneration are not degraded.•Regeneration process is repeatable.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2020.108121</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Adsorbents ; Aqueous solutions ; Cations ; Chemisorption ; Copper ; Detonation ; Detonation nanodiamonds ; Diamonds ; Linear equations ; Metal ions ; Nanostructure ; Nickel ; Nitric acid ; Regeneration ; Sintering ; Sorption ; Surface chemistry ; Surface properties ; Zinc</subject><ispartof>Diamond and related materials, 2020-12, Vol.110, p.108121, Article 108121</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6dcfcd03cdb885ff4513da2bfdcbcf361e955608282e63404ec85c49bb0b5a493</citedby><cites>FETCH-LOGICAL-c337t-6dcfcd03cdb885ff4513da2bfdcbcf361e955608282e63404ec85c49bb0b5a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2020.108121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Volkov, Dmitry S.</creatorcontrib><creatorcontrib>Krivoshein, Petr K.</creatorcontrib><creatorcontrib>Mikheev, Ivan V.</creatorcontrib><creatorcontrib>Proskurnin, Mikhail A.</creatorcontrib><title>Pristine detonation nanodiamonds as regenerable adsorbents for metal cations</title><title>Diamond and related materials</title><description>The usability of pristine (not functionalized by grafting) detonation nanodiamonds as reversible and repeatedly regenerated adsorbents for metal cations was shown by examples of sorption of cadmium, zinc, nickel, and copper from aqueous solutions. Various pristine nanodiamond surface treatments are discussed. The procedure of oxidative sintering with nitric acid at 250 °C provided a surface with an increased number of carboxyl groups with a sorption capacity above 100 μmol/g for all test cations. Sorption isotherms for test metals (copper, nickel, zinc, and cadmium) can be divided into two distinct parts: a lower part for concentrations of up to 10–15 mmol/L belong to the Langmuir L5 type by Giles and absorption free energies are 8–12 kJ/mol according to the Dubinin–Radushkevich model, evidencing a primarily chemisorption mechanism of the studied cations on micropores in ND surface. The parts of curves above 10–15 mmol/L are described with linear equations, free energies of absorption are 4–6 kJ/mol by Dubinin–Radushkevich that are assigned to physisorption in mesopores. A procedure for the surface regeneration, which is based a similar sintering treatment with nitric acid, was developed. It provided sorption parameters not degraded compared to the starting material; and the regeneration process is repeatable at least for 10 cycles.
[Display omitted]
•Use of nanodiamonds as regenerable cationic sorbents is shown.•Nitric-acid treatment at 250 °C provided sorption capacity above 100 μmol/g.•Langmuir sorption isotherms are shown; absorption free energies are 8–12 kJ/mol according to Dubinin–Radushkevich model.•A regeneration procedure is based on a similar treatment with nitric acid. Sorption parameters of nanodiamonds after regeneration are not degraded.•Regeneration process is repeatable.</description><subject>Absorption</subject><subject>Adsorbents</subject><subject>Aqueous solutions</subject><subject>Cations</subject><subject>Chemisorption</subject><subject>Copper</subject><subject>Detonation</subject><subject>Detonation nanodiamonds</subject><subject>Diamonds</subject><subject>Linear equations</subject><subject>Metal ions</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Nitric acid</subject><subject>Regeneration</subject><subject>Sintering</subject><subject>Sorption</subject><subject>Surface chemistry</subject><subject>Surface properties</subject><subject>Zinc</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QRhwPTWPyUyyEim-oKALXYc8biRDm9QkFfz3Tm33ri4czjmX8yF0TfCCYNLfjgsX9CZFt6CY7jVBKDlBMyIG2WLc01M0w5LyVvaMn6OLUkaMCZUdmaHVWw6lhgiNg5qiriHFJuqYjpWl0aXJ8AkRsjZraLQrKRuItTQ-5WYDVa8b-5crl-jM63WBq-Odo4_Hh_flc7t6fXpZ3q9ay9hQ295Zbx1m1hkhuPcdJ8xparyzxnrWE5Cc91hQQaFnHe7ACm47aQw2XHeSzdHNoXeb09cOSlVj2uU4vVS0E3KCIIZhcvGDy-ZUSgavtjlsdP5RBKs9ODWq40q1B6cO4Kbc3SEH04TvAFkVGyBacCGDrcql8E_DLw2wenY</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Volkov, Dmitry S.</creator><creator>Krivoshein, Petr K.</creator><creator>Mikheev, Ivan V.</creator><creator>Proskurnin, Mikhail A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202012</creationdate><title>Pristine detonation nanodiamonds as regenerable adsorbents for metal cations</title><author>Volkov, Dmitry S. ; Krivoshein, Petr K. ; Mikheev, Ivan V. ; Proskurnin, Mikhail A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6dcfcd03cdb885ff4513da2bfdcbcf361e955608282e63404ec85c49bb0b5a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Adsorbents</topic><topic>Aqueous solutions</topic><topic>Cations</topic><topic>Chemisorption</topic><topic>Copper</topic><topic>Detonation</topic><topic>Detonation nanodiamonds</topic><topic>Diamonds</topic><topic>Linear equations</topic><topic>Metal ions</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Nitric acid</topic><topic>Regeneration</topic><topic>Sintering</topic><topic>Sorption</topic><topic>Surface chemistry</topic><topic>Surface properties</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Dmitry S.</creatorcontrib><creatorcontrib>Krivoshein, Petr K.</creatorcontrib><creatorcontrib>Mikheev, Ivan V.</creatorcontrib><creatorcontrib>Proskurnin, Mikhail A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Dmitry S.</au><au>Krivoshein, Petr K.</au><au>Mikheev, Ivan V.</au><au>Proskurnin, Mikhail A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pristine detonation nanodiamonds as regenerable adsorbents for metal cations</atitle><jtitle>Diamond and related materials</jtitle><date>2020-12</date><risdate>2020</risdate><volume>110</volume><spage>108121</spage><pages>108121-</pages><artnum>108121</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>The usability of pristine (not functionalized by grafting) detonation nanodiamonds as reversible and repeatedly regenerated adsorbents for metal cations was shown by examples of sorption of cadmium, zinc, nickel, and copper from aqueous solutions. Various pristine nanodiamond surface treatments are discussed. The procedure of oxidative sintering with nitric acid at 250 °C provided a surface with an increased number of carboxyl groups with a sorption capacity above 100 μmol/g for all test cations. Sorption isotherms for test metals (copper, nickel, zinc, and cadmium) can be divided into two distinct parts: a lower part for concentrations of up to 10–15 mmol/L belong to the Langmuir L5 type by Giles and absorption free energies are 8–12 kJ/mol according to the Dubinin–Radushkevich model, evidencing a primarily chemisorption mechanism of the studied cations on micropores in ND surface. The parts of curves above 10–15 mmol/L are described with linear equations, free energies of absorption are 4–6 kJ/mol by Dubinin–Radushkevich that are assigned to physisorption in mesopores. A procedure for the surface regeneration, which is based a similar sintering treatment with nitric acid, was developed. It provided sorption parameters not degraded compared to the starting material; and the regeneration process is repeatable at least for 10 cycles.
[Display omitted]
•Use of nanodiamonds as regenerable cationic sorbents is shown.•Nitric-acid treatment at 250 °C provided sorption capacity above 100 μmol/g.•Langmuir sorption isotherms are shown; absorption free energies are 8–12 kJ/mol according to Dubinin–Radushkevich model.•A regeneration procedure is based on a similar treatment with nitric acid. Sorption parameters of nanodiamonds after regeneration are not degraded.•Regeneration process is repeatable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2020.108121</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2020-12, Vol.110, p.108121, Article 108121 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_journals_2489020877 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Absorption Adsorbents Aqueous solutions Cations Chemisorption Copper Detonation Detonation nanodiamonds Diamonds Linear equations Metal ions Nanostructure Nickel Nitric acid Regeneration Sintering Sorption Surface chemistry Surface properties Zinc |
title | Pristine detonation nanodiamonds as regenerable adsorbents for metal cations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pristine%20detonation%20nanodiamonds%20as%20regenerable%20adsorbents%20for%20metal%20cations&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Volkov,%20Dmitry%20S.&rft.date=2020-12&rft.volume=110&rft.spage=108121&rft.pages=108121-&rft.artnum=108121&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2020.108121&rft_dat=%3Cproquest_cross%3E2489020877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489020877&rft_id=info:pmid/&rft_els_id=S0925963520306749&rfr_iscdi=true |