Theory of coupled ion-electron transfer kinetics
The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here,...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-01, Vol.367, p.137432, Article 137432 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 137432 |
container_title | Electrochimica acta |
container_volume | 367 |
creator | Fraggedakis, Dimitrios McEldrew, Michael Smith, Raymond B. Krishnan, Yamini Zhang, Yirui Bai, Peng Chueh, William C. Shao-Horn, Yang Bazant, Martin Z. |
description | The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing. |
doi_str_mv | 10.1016/j.electacta.2020.137432 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489020745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620318259</els_id><sourcerecordid>2489020745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwQXPWyebdDM5luI_KHip57CbnWDWuqnJVui3N7riVRiYYXjzhvdj7JrDggOvb_sF7ciOTa5FBVXeCiVFdcJmHJUoBS71KZsBcFHKGutzdpFSDwCqVjBjsH2lEI9FcIUNh_2OusKHofyxjGEoxtgMyVEs3vxAo7fpkp25Zpfo6rfP2cv93Xb9WG6eH57Wq01pJeix1NldameVdVS1XYtd5_IoW9nWyDUKQKcdokSrYckBhMIOWsSm1QSyEXN2M_nuY_g4UBpNHw5xyC9NJVHnoEous0pNKhtDSpGc2Uf_3sSj4WC-8Zje_OEx33jMhCdfrqZLyiE-PUWTrKfBUudj1psu-H89vgAmkXF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489020745</pqid></control><display><type>article</type><title>Theory of coupled ion-electron transfer kinetics</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fraggedakis, Dimitrios ; McEldrew, Michael ; Smith, Raymond B. ; Krishnan, Yamini ; Zhang, Yirui ; Bai, Peng ; Chueh, William C. ; Shao-Horn, Yang ; Bazant, Martin Z.</creator><creatorcontrib>Fraggedakis, Dimitrios ; McEldrew, Michael ; Smith, Raymond B. ; Krishnan, Yamini ; Zhang, Yirui ; Bai, Peng ; Chueh, William C. ; Shao-Horn, Yang ; Bazant, Martin Z.</creatorcontrib><description>The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137432</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemical potential ; Chemical reactions ; Coupled ion-electron transfer ; Electron transfer ; Electronic structure ; Electrons ; Ion intercalation ; Li-ion batteries ; Lithium-ion batteries ; Memristors ; Neuromorphic computing ; Rechargeable batteries ; Solvents ; X ray microscopy</subject><ispartof>Electrochimica acta, 2021-01, Vol.367, p.137432, Article 137432</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</citedby><cites>FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</cites><orcidid>0000-0003-3301-6255 ; 0000-0001-7880-1391 ; 0000-0002-2419-3498 ; 0000-0001-8714-2121 ; 0000-0002-3754-1367 ; 0000-0001-7604-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.137432$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Fraggedakis, Dimitrios</creatorcontrib><creatorcontrib>McEldrew, Michael</creatorcontrib><creatorcontrib>Smith, Raymond B.</creatorcontrib><creatorcontrib>Krishnan, Yamini</creatorcontrib><creatorcontrib>Zhang, Yirui</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Bazant, Martin Z.</creatorcontrib><title>Theory of coupled ion-electron transfer kinetics</title><title>Electrochimica acta</title><description>The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.</description><subject>Chemical potential</subject><subject>Chemical reactions</subject><subject>Coupled ion-electron transfer</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Ion intercalation</subject><subject>Li-ion batteries</subject><subject>Lithium-ion batteries</subject><subject>Memristors</subject><subject>Neuromorphic computing</subject><subject>Rechargeable batteries</subject><subject>Solvents</subject><subject>X ray microscopy</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwQXPWyebdDM5luI_KHip57CbnWDWuqnJVui3N7riVRiYYXjzhvdj7JrDggOvb_sF7ciOTa5FBVXeCiVFdcJmHJUoBS71KZsBcFHKGutzdpFSDwCqVjBjsH2lEI9FcIUNh_2OusKHofyxjGEoxtgMyVEs3vxAo7fpkp25Zpfo6rfP2cv93Xb9WG6eH57Wq01pJeix1NldameVdVS1XYtd5_IoW9nWyDUKQKcdokSrYckBhMIOWsSm1QSyEXN2M_nuY_g4UBpNHw5xyC9NJVHnoEous0pNKhtDSpGc2Uf_3sSj4WC-8Zje_OEx33jMhCdfrqZLyiE-PUWTrKfBUudj1psu-H89vgAmkXF-</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Fraggedakis, Dimitrios</creator><creator>McEldrew, Michael</creator><creator>Smith, Raymond B.</creator><creator>Krishnan, Yamini</creator><creator>Zhang, Yirui</creator><creator>Bai, Peng</creator><creator>Chueh, William C.</creator><creator>Shao-Horn, Yang</creator><creator>Bazant, Martin Z.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3301-6255</orcidid><orcidid>https://orcid.org/0000-0001-7880-1391</orcidid><orcidid>https://orcid.org/0000-0002-2419-3498</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0002-3754-1367</orcidid><orcidid>https://orcid.org/0000-0001-7604-8623</orcidid></search><sort><creationdate>20210120</creationdate><title>Theory of coupled ion-electron transfer kinetics</title><author>Fraggedakis, Dimitrios ; McEldrew, Michael ; Smith, Raymond B. ; Krishnan, Yamini ; Zhang, Yirui ; Bai, Peng ; Chueh, William C. ; Shao-Horn, Yang ; Bazant, Martin Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical potential</topic><topic>Chemical reactions</topic><topic>Coupled ion-electron transfer</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Ion intercalation</topic><topic>Li-ion batteries</topic><topic>Lithium-ion batteries</topic><topic>Memristors</topic><topic>Neuromorphic computing</topic><topic>Rechargeable batteries</topic><topic>Solvents</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraggedakis, Dimitrios</creatorcontrib><creatorcontrib>McEldrew, Michael</creatorcontrib><creatorcontrib>Smith, Raymond B.</creatorcontrib><creatorcontrib>Krishnan, Yamini</creatorcontrib><creatorcontrib>Zhang, Yirui</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Bazant, Martin Z.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraggedakis, Dimitrios</au><au>McEldrew, Michael</au><au>Smith, Raymond B.</au><au>Krishnan, Yamini</au><au>Zhang, Yirui</au><au>Bai, Peng</au><au>Chueh, William C.</au><au>Shao-Horn, Yang</au><au>Bazant, Martin Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of coupled ion-electron transfer kinetics</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>367</volume><spage>137432</spage><pages>137432-</pages><artnum>137432</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137432</doi><orcidid>https://orcid.org/0000-0003-3301-6255</orcidid><orcidid>https://orcid.org/0000-0001-7880-1391</orcidid><orcidid>https://orcid.org/0000-0002-2419-3498</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0002-3754-1367</orcidid><orcidid>https://orcid.org/0000-0001-7604-8623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-01, Vol.367, p.137432, Article 137432 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2489020745 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chemical potential Chemical reactions Coupled ion-electron transfer Electron transfer Electronic structure Electrons Ion intercalation Li-ion batteries Lithium-ion batteries Memristors Neuromorphic computing Rechargeable batteries Solvents X ray microscopy |
title | Theory of coupled ion-electron transfer kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20coupled%20ion-electron%20transfer%20kinetics&rft.jtitle=Electrochimica%20acta&rft.au=Fraggedakis,%20Dimitrios&rft.date=2021-01-20&rft.volume=367&rft.spage=137432&rft.pages=137432-&rft.artnum=137432&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137432&rft_dat=%3Cproquest_cross%3E2489020745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489020745&rft_id=info:pmid/&rft_els_id=S0013468620318259&rfr_iscdi=true |