Theory of coupled ion-electron transfer kinetics

The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-01, Vol.367, p.137432, Article 137432
Hauptverfasser: Fraggedakis, Dimitrios, McEldrew, Michael, Smith, Raymond B., Krishnan, Yamini, Zhang, Yirui, Bai, Peng, Chueh, William C., Shao-Horn, Yang, Bazant, Martin Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 137432
container_title Electrochimica acta
container_volume 367
creator Fraggedakis, Dimitrios
McEldrew, Michael
Smith, Raymond B.
Krishnan, Yamini
Zhang, Yirui
Bai, Peng
Chueh, William C.
Shao-Horn, Yang
Bazant, Martin Z.
description The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.
doi_str_mv 10.1016/j.electacta.2020.137432
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489020745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620318259</els_id><sourcerecordid>2489020745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwQXPWyebdDM5luI_KHip57CbnWDWuqnJVui3N7riVRiYYXjzhvdj7JrDggOvb_sF7ciOTa5FBVXeCiVFdcJmHJUoBS71KZsBcFHKGutzdpFSDwCqVjBjsH2lEI9FcIUNh_2OusKHofyxjGEoxtgMyVEs3vxAo7fpkp25Zpfo6rfP2cv93Xb9WG6eH57Wq01pJeix1NldameVdVS1XYtd5_IoW9nWyDUKQKcdokSrYckBhMIOWsSm1QSyEXN2M_nuY_g4UBpNHw5xyC9NJVHnoEous0pNKhtDSpGc2Uf_3sSj4WC-8Zje_OEx33jMhCdfrqZLyiE-PUWTrKfBUudj1psu-H89vgAmkXF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489020745</pqid></control><display><type>article</type><title>Theory of coupled ion-electron transfer kinetics</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fraggedakis, Dimitrios ; McEldrew, Michael ; Smith, Raymond B. ; Krishnan, Yamini ; Zhang, Yirui ; Bai, Peng ; Chueh, William C. ; Shao-Horn, Yang ; Bazant, Martin Z.</creator><creatorcontrib>Fraggedakis, Dimitrios ; McEldrew, Michael ; Smith, Raymond B. ; Krishnan, Yamini ; Zhang, Yirui ; Bai, Peng ; Chueh, William C. ; Shao-Horn, Yang ; Bazant, Martin Z.</creatorcontrib><description>The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137432</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemical potential ; Chemical reactions ; Coupled ion-electron transfer ; Electron transfer ; Electronic structure ; Electrons ; Ion intercalation ; Li-ion batteries ; Lithium-ion batteries ; Memristors ; Neuromorphic computing ; Rechargeable batteries ; Solvents ; X ray microscopy</subject><ispartof>Electrochimica acta, 2021-01, Vol.367, p.137432, Article 137432</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</citedby><cites>FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</cites><orcidid>0000-0003-3301-6255 ; 0000-0001-7880-1391 ; 0000-0002-2419-3498 ; 0000-0001-8714-2121 ; 0000-0002-3754-1367 ; 0000-0001-7604-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.137432$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Fraggedakis, Dimitrios</creatorcontrib><creatorcontrib>McEldrew, Michael</creatorcontrib><creatorcontrib>Smith, Raymond B.</creatorcontrib><creatorcontrib>Krishnan, Yamini</creatorcontrib><creatorcontrib>Zhang, Yirui</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Bazant, Martin Z.</creatorcontrib><title>Theory of coupled ion-electron transfer kinetics</title><title>Electrochimica acta</title><description>The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.</description><subject>Chemical potential</subject><subject>Chemical reactions</subject><subject>Coupled ion-electron transfer</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Ion intercalation</subject><subject>Li-ion batteries</subject><subject>Lithium-ion batteries</subject><subject>Memristors</subject><subject>Neuromorphic computing</subject><subject>Rechargeable batteries</subject><subject>Solvents</subject><subject>X ray microscopy</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwQXPWyebdDM5luI_KHip57CbnWDWuqnJVui3N7riVRiYYXjzhvdj7JrDggOvb_sF7ciOTa5FBVXeCiVFdcJmHJUoBS71KZsBcFHKGutzdpFSDwCqVjBjsH2lEI9FcIUNh_2OusKHofyxjGEoxtgMyVEs3vxAo7fpkp25Zpfo6rfP2cv93Xb9WG6eH57Wq01pJeix1NldameVdVS1XYtd5_IoW9nWyDUKQKcdokSrYckBhMIOWsSm1QSyEXN2M_nuY_g4UBpNHw5xyC9NJVHnoEous0pNKhtDSpGc2Uf_3sSj4WC-8Zje_OEx33jMhCdfrqZLyiE-PUWTrKfBUudj1psu-H89vgAmkXF-</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Fraggedakis, Dimitrios</creator><creator>McEldrew, Michael</creator><creator>Smith, Raymond B.</creator><creator>Krishnan, Yamini</creator><creator>Zhang, Yirui</creator><creator>Bai, Peng</creator><creator>Chueh, William C.</creator><creator>Shao-Horn, Yang</creator><creator>Bazant, Martin Z.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3301-6255</orcidid><orcidid>https://orcid.org/0000-0001-7880-1391</orcidid><orcidid>https://orcid.org/0000-0002-2419-3498</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0002-3754-1367</orcidid><orcidid>https://orcid.org/0000-0001-7604-8623</orcidid></search><sort><creationdate>20210120</creationdate><title>Theory of coupled ion-electron transfer kinetics</title><author>Fraggedakis, Dimitrios ; McEldrew, Michael ; Smith, Raymond B. ; Krishnan, Yamini ; Zhang, Yirui ; Bai, Peng ; Chueh, William C. ; Shao-Horn, Yang ; Bazant, Martin Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-967049fc7cfe2bdb8ddfcfe4b4b68198308f9f8848c905100378d0b88ab9e04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical potential</topic><topic>Chemical reactions</topic><topic>Coupled ion-electron transfer</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Ion intercalation</topic><topic>Li-ion batteries</topic><topic>Lithium-ion batteries</topic><topic>Memristors</topic><topic>Neuromorphic computing</topic><topic>Rechargeable batteries</topic><topic>Solvents</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraggedakis, Dimitrios</creatorcontrib><creatorcontrib>McEldrew, Michael</creatorcontrib><creatorcontrib>Smith, Raymond B.</creatorcontrib><creatorcontrib>Krishnan, Yamini</creatorcontrib><creatorcontrib>Zhang, Yirui</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Bazant, Martin Z.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraggedakis, Dimitrios</au><au>McEldrew, Michael</au><au>Smith, Raymond B.</au><au>Krishnan, Yamini</au><au>Zhang, Yirui</au><au>Bai, Peng</au><au>Chueh, William C.</au><au>Shao-Horn, Yang</au><au>Bazant, Martin Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of coupled ion-electron transfer kinetics</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>367</volume><spage>137432</spage><pages>137432-</pages><artnum>137432</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate non-adiabatic electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler–Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by in operando X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137432</doi><orcidid>https://orcid.org/0000-0003-3301-6255</orcidid><orcidid>https://orcid.org/0000-0001-7880-1391</orcidid><orcidid>https://orcid.org/0000-0002-2419-3498</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0002-3754-1367</orcidid><orcidid>https://orcid.org/0000-0001-7604-8623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-01, Vol.367, p.137432, Article 137432
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2489020745
source ScienceDirect Journals (5 years ago - present)
subjects Chemical potential
Chemical reactions
Coupled ion-electron transfer
Electron transfer
Electronic structure
Electrons
Ion intercalation
Li-ion batteries
Lithium-ion batteries
Memristors
Neuromorphic computing
Rechargeable batteries
Solvents
X ray microscopy
title Theory of coupled ion-electron transfer kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20coupled%20ion-electron%20transfer%20kinetics&rft.jtitle=Electrochimica%20acta&rft.au=Fraggedakis,%20Dimitrios&rft.date=2021-01-20&rft.volume=367&rft.spage=137432&rft.pages=137432-&rft.artnum=137432&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137432&rft_dat=%3Cproquest_cross%3E2489020745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489020745&rft_id=info:pmid/&rft_els_id=S0013468620318259&rfr_iscdi=true