Multi-spectral remote sensing land-cover classification based on deep learning methods

It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2021-03, Vol.77 (3), p.2829-2843
Hauptverfasser: He, Tongdi, Wang, Shengxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2843
container_issue 3
container_start_page 2829
container_title The Journal of supercomputing
container_volume 77
creator He, Tongdi
Wang, Shengxin
description It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.
doi_str_mv 10.1007/s11227-020-03377-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489013733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489013733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwkq5pj2jinzTEBbhGqeOMTl1bkg7EtyejSNw42bLf71l-jJ0LuBQA-ioKIaXmIIGDUlrzzwM2EwutOORlfshmUKVVucjlMTuJcQMAudJqxl4fd-3Y8DgQjsG2WaBtP1IWqYtNt85a2zmO_QeFDFsbY-MbtGPTd1ltI7ksNY5oyFqyodsDWxrfehdP2ZG3baSz3zpnL7c3z8t7vnq6e1herzgqUY28RiJP6KUWHmtCV1CaLEiovNJOo9I1uFIWhdIItiKSiMKhKqD0DrRQc3Yx-Q6hf99RHM2m34UunTQyLysQ6UmVVHJSYehjDOTNEJqtDV9GgNnnZ6b8TMrP_ORnPhOkJigmcbem8Gf9D_UNiYp2Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489013733</pqid></control><display><type>article</type><title>Multi-spectral remote sensing land-cover classification based on deep learning methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Tongdi ; Wang, Shengxin</creator><creatorcontrib>He, Tongdi ; Wang, Shengxin</creatorcontrib><description>It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03377-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Compilers ; Computer Science ; Deep learning ; Deep Learning in IoT: Emerging Trends and Applications - 2019 ; Discriminant analysis ; Feature extraction ; Image classification ; Interpreters ; Land cover ; Land use ; Machine learning ; Neural networks ; Principal components analysis ; Processor Architectures ; Programming Languages ; Remote sensing ; Spectra ; Vegetation index</subject><ispartof>The Journal of supercomputing, 2021-03, Vol.77 (3), p.2829-2843</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</citedby><cites>FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-020-03377-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-020-03377-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>He, Tongdi</creatorcontrib><creatorcontrib>Wang, Shengxin</creatorcontrib><title>Multi-spectral remote sensing land-cover classification based on deep learning methods</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.</description><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Deep Learning in IoT: Emerging Trends and Applications - 2019</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Interpreters</subject><subject>Land cover</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>Vegetation index</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwkq5pj2jinzTEBbhGqeOMTl1bkg7EtyejSNw42bLf71l-jJ0LuBQA-ioKIaXmIIGDUlrzzwM2EwutOORlfshmUKVVucjlMTuJcQMAudJqxl4fd-3Y8DgQjsG2WaBtP1IWqYtNt85a2zmO_QeFDFsbY-MbtGPTd1ltI7ksNY5oyFqyodsDWxrfehdP2ZG3baSz3zpnL7c3z8t7vnq6e1herzgqUY28RiJP6KUWHmtCV1CaLEiovNJOo9I1uFIWhdIItiKSiMKhKqD0DrRQc3Yx-Q6hf99RHM2m34UunTQyLysQ6UmVVHJSYehjDOTNEJqtDV9GgNnnZ6b8TMrP_ORnPhOkJigmcbem8Gf9D_UNiYp2Bg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>He, Tongdi</creator><creator>Wang, Shengxin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Multi-spectral remote sensing land-cover classification based on deep learning methods</title><author>He, Tongdi ; Wang, Shengxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Deep Learning in IoT: Emerging Trends and Applications - 2019</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Interpreters</topic><topic>Land cover</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Tongdi</creatorcontrib><creatorcontrib>Wang, Shengxin</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Tongdi</au><au>Wang, Shengxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-spectral remote sensing land-cover classification based on deep learning methods</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>77</volume><issue>3</issue><spage>2829</spage><epage>2843</epage><pages>2829-2843</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03377-w</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2021-03, Vol.77 (3), p.2829-2843
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2489013733
source SpringerLink Journals - AutoHoldings
subjects Classification
Compilers
Computer Science
Deep learning
Deep Learning in IoT: Emerging Trends and Applications - 2019
Discriminant analysis
Feature extraction
Image classification
Interpreters
Land cover
Land use
Machine learning
Neural networks
Principal components analysis
Processor Architectures
Programming Languages
Remote sensing
Spectra
Vegetation index
title Multi-spectral remote sensing land-cover classification based on deep learning methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-spectral%20remote%20sensing%20land-cover%20classification%20based%20on%20deep%20learning%20methods&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=He,%20Tongdi&rft.date=2021-03-01&rft.volume=77&rft.issue=3&rft.spage=2829&rft.epage=2843&rft.pages=2829-2843&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03377-w&rft_dat=%3Cproquest_cross%3E2489013733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489013733&rft_id=info:pmid/&rfr_iscdi=true