Multi-spectral remote sensing land-cover classification based on deep learning methods
It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spec...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2021-03, Vol.77 (3), p.2829-2843 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2843 |
---|---|
container_issue | 3 |
container_start_page | 2829 |
container_title | The Journal of supercomputing |
container_volume | 77 |
creator | He, Tongdi Wang, Shengxin |
description | It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification. |
doi_str_mv | 10.1007/s11227-020-03377-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2489013733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489013733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwkq5pj2jinzTEBbhGqeOMTl1bkg7EtyejSNw42bLf71l-jJ0LuBQA-ioKIaXmIIGDUlrzzwM2EwutOORlfshmUKVVucjlMTuJcQMAudJqxl4fd-3Y8DgQjsG2WaBtP1IWqYtNt85a2zmO_QeFDFsbY-MbtGPTd1ltI7ksNY5oyFqyodsDWxrfehdP2ZG3baSz3zpnL7c3z8t7vnq6e1herzgqUY28RiJP6KUWHmtCV1CaLEiovNJOo9I1uFIWhdIItiKSiMKhKqD0DrRQc3Yx-Q6hf99RHM2m34UunTQyLysQ6UmVVHJSYehjDOTNEJqtDV9GgNnnZ6b8TMrP_ORnPhOkJigmcbem8Gf9D_UNiYp2Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489013733</pqid></control><display><type>article</type><title>Multi-spectral remote sensing land-cover classification based on deep learning methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Tongdi ; Wang, Shengxin</creator><creatorcontrib>He, Tongdi ; Wang, Shengxin</creatorcontrib><description>It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03377-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Compilers ; Computer Science ; Deep learning ; Deep Learning in IoT: Emerging Trends and Applications - 2019 ; Discriminant analysis ; Feature extraction ; Image classification ; Interpreters ; Land cover ; Land use ; Machine learning ; Neural networks ; Principal components analysis ; Processor Architectures ; Programming Languages ; Remote sensing ; Spectra ; Vegetation index</subject><ispartof>The Journal of supercomputing, 2021-03, Vol.77 (3), p.2829-2843</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</citedby><cites>FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-020-03377-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-020-03377-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>He, Tongdi</creatorcontrib><creatorcontrib>Wang, Shengxin</creatorcontrib><title>Multi-spectral remote sensing land-cover classification based on deep learning methods</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.</description><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Deep Learning in IoT: Emerging Trends and Applications - 2019</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Interpreters</subject><subject>Land cover</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>Vegetation index</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hxwkq5pj2jinzTEBbhGqeOMTl1bkg7EtyejSNw42bLf71l-jJ0LuBQA-ioKIaXmIIGDUlrzzwM2EwutOORlfshmUKVVucjlMTuJcQMAudJqxl4fd-3Y8DgQjsG2WaBtP1IWqYtNt85a2zmO_QeFDFsbY-MbtGPTd1ltI7ksNY5oyFqyodsDWxrfehdP2ZG3baSz3zpnL7c3z8t7vnq6e1herzgqUY28RiJP6KUWHmtCV1CaLEiovNJOo9I1uFIWhdIItiKSiMKhKqD0DrRQc3Yx-Q6hf99RHM2m34UunTQyLysQ6UmVVHJSYehjDOTNEJqtDV9GgNnnZ6b8TMrP_ORnPhOkJigmcbem8Gf9D_UNiYp2Bg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>He, Tongdi</creator><creator>Wang, Shengxin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Multi-spectral remote sensing land-cover classification based on deep learning methods</title><author>He, Tongdi ; Wang, Shengxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bceefecf271fcbecd6ecee5e13497d7c37b0d826637c0a9ee2cc1dc3608fd0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Deep Learning in IoT: Emerging Trends and Applications - 2019</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Interpreters</topic><topic>Land cover</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Tongdi</creatorcontrib><creatorcontrib>Wang, Shengxin</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Tongdi</au><au>Wang, Shengxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-spectral remote sensing land-cover classification based on deep learning methods</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>77</volume><issue>3</issue><spage>2829</spage><epage>2843</epage><pages>2829-2843</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>It is of great significance and practical application value to extract land-cover type accurately. However, the input data usually used in classification such as reflectance data or vegetation index are very simple and quantitative remote sensing products are rarely used. In this paper, a multi-spectral land-cover classification method based on deep learning is proposed. Using the excellent detail capture ability of contourlet transform to obtain the potential information to supplement the spectral feature space, combined with deep learning for feature selection and feature extraction, a spectral–texture classification model is constructed. The multi-spectral sensing remote data and field measurement data in Dadukou District of Chongqing, northern Negev, and Changping region of Beijing were used for evaluation. Experiment results show the proposed method can outperform principal component analysis, linear discriminant analysis and neural network, and effectively improve the classification accuracy of multi-spectral images; this method provides a new perspective for land-use classification.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03377-w</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2021-03, Vol.77 (3), p.2829-2843 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2489013733 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classification Compilers Computer Science Deep learning Deep Learning in IoT: Emerging Trends and Applications - 2019 Discriminant analysis Feature extraction Image classification Interpreters Land cover Land use Machine learning Neural networks Principal components analysis Processor Architectures Programming Languages Remote sensing Spectra Vegetation index |
title | Multi-spectral remote sensing land-cover classification based on deep learning methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-spectral%20remote%20sensing%20land-cover%20classification%20based%20on%20deep%20learning%20methods&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=He,%20Tongdi&rft.date=2021-03-01&rft.volume=77&rft.issue=3&rft.spage=2829&rft.epage=2843&rft.pages=2829-2843&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03377-w&rft_dat=%3Cproquest_cross%3E2489013733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489013733&rft_id=info:pmid/&rfr_iscdi=true |